Beginning Anomaly Detection Using



Download 26,57 Mb.
Pdf ko'rish
bet68/283
Sana12.07.2021
Hajmi26,57 Mb.
#116397
1   ...   64   65   66   67   68   69   70   71   ...   283
Bog'liq
Beginning Anomaly Detection Using Python-Based Deep Learning

mean squared error, named so because the function 

given input 



θ, the weights, finds the average difference squared between the predicted 

value and the actual value. The parameter h



θ

 represents the model with the weight 

parameter 

θ passed in, so h

θ

(x



i

) gives the predicted value for x



i

 with model’s weights 



θ. The 

parameter y



i

 represents the actual prediction for the data point at index i. If the parameter 

you are passing in includes both weight and bias, then it will look more like Figure 

3-12


.

Note that h



wb

(x



i

) will have the formula in Figure 

3-13

.

The cost function reflects the overall performance of the model with the current 



weight parameter, so the most ideal value output from the cost function will be as small 

as possible. Since the cost function is a measure of how far the model’s predictions 

are from the actual value, you want to make the output from the cost function as small 

as possible since that means your predictions were almost what the actual prediction 

should be.

To minimize the cost function, you need to tell the model how to adjust the weights, 

but how do you do that? If you think back to calculus, optimization problems involved 

finding the derivative and solving for the critical points (points where the derivative of 

the original equation is 0). In your case, you want to find the 


Download 26,57 Mb.

Do'stlaringiz bilan baham:
1   ...   64   65   66   67   68   69   70   71   ...   283




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish