Beginning Anomaly Detection Using


IURP VNOHDUQPHWULFV LPSRUW



Download 26,57 Mb.
Pdf ko'rish
bet60/283
Sana12.07.2021
Hajmi26,57 Mb.
#116397
1   ...   56   57   58   59   60   61   62   63   ...   283
Bog'liq
Beginning Anomaly Detection Using Python-Based Deep Learning

IURP

VNOHDUQPHWULFV



LPSRUW

URFBDXFBVFRUH

SUHGV RFVYPSUHGLFW QRYHOWLHV

PDWFKHV QRYHOWLHV>ODEHO@  

DXF URFBDXFBVFRUH SUHGVPDWFKHV

SULQW $8&^`IRUPDW DXF



Figure 2-54.  The code to generate the AUC score

Chapter 2   traditional Methods of anoMaly deteCtion




70

Figure 


2-55

 shows the score. That’s pretty good for an AUC score!

Let’s look at the distribution of predictions in Figure 

2-56


.

Figure 2-55.  The generated AUC score from the predictions on the novelty set

Figure 2-56.  Code to display a graph that shows the distributions for the 

predictions

Chapter 2   traditional Methods of anoMaly deteCtion




71

As you can see in Figure 

2-57

, the model ended up predicting more anomalies than 



normal data points, but from what the AUC tells us, it managed to classify most of the 

data entries correctly.

Hopefully by now you will have gained a better understanding of what an  

OC-SVM is and how to apply it. Remember, OC-SVM works well for multi-dimensional 

data (in this case, you had 41 columns after dropping the service column) and can 

be used for 




Download 26,57 Mb.

Do'stlaringiz bilan baham:
1   ...   56   57   58   59   60   61   62   63   ...   283




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish