Beginning Anomaly Detection Using



Download 26,57 Mb.
Pdf ko'rish
bet199/283
Sana12.07.2021
Hajmi26,57 Mb.
#116397
1   ...   195   196   197   198   199   200   201   202   ...   283
Bog'liq
Beginning Anomaly Detection Using Python-Based Deep Learning

 Finance  and Insurance

In the finance and insurance industries, anomaly detection can be used to detect 

fraudulent claims, fraudulent transactions such as transfer of money in and out of the 

country, fraudulent travel expenses, and the risk associated with the specific policy or 

individual, etc. The finance and insurance industries depend on the ability to target 

the right consumers and take the right amount of risk when dealing with finance and 



Figure 8-11.  Fake news on Facebook

Chapter 8   praCtiCal Use Cases of anomaly DeteCtion




309

insurance. For instance, if they already know that a specific area is prone to forest fires 

or earthquakes or very frequent flooding, the insurance company insuring your home 

needs to have all the tools that they can get their hands on to quantify the amount of risk 

involved when writing the policy for homeowner insurance.

Anomaly detection can also be used to detect wire fraud where a large amount 

of money is transferred in and out of the country using several different accounts

something extremely difficult for human eyes to manually glance over and figure out 

considering the massive volume of transactions that can take place every hour. This is 

feasible because AI techniques can be trained on very large amounts of data to detect 

very new and innovative wire fraud beyond the capabilities of any human or many of the 

statistical techniques that have been in place for decades. Deep learning does solve a very 

big problem in the financial and insurance industries, and with the advent of graphical 

processing units (GPUs), this is becoming a reality in many of the very hard- to- crack use 

cases. Anomaly detection and deep learning can be used together in order to serve the 

needs of the business. Figure 

8-12

 shows the mortgage loan fraud reporting trend.




Download 26,57 Mb.

Do'stlaringiz bilan baham:
1   ...   195   196   197   198   199   200   201   202   ...   283




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish