Beginning Anomaly Detection Using



Download 26,57 Mb.
Pdf ko'rish
bet66/283
Sana12.07.2021
Hajmi26,57 Mb.
#116397
1   ...   62   63   64   65   66   67   68   69   ...   283
Bog'liq
Beginning Anomaly Detection Using Python-Based Deep Learning

Figure 3-4.  This is how dot product works. Shown here is an example with two 

different types of vector notation

Figure 3-5.  An equation that captures the basic functionality of an artificial 

neuron. In this case, f(x) is an activation function

Chapter 3   IntroduCtIon to deep LearnIng




77



hidden layer is one that is between the input layer and the output layer. There 

can be multiple hidden layers in a network. Now that you’ve seen what an artificial 

neural network can look like, let’s take a look at how the data can flow through this 

network. First, we start with nothing but the input data in the network, and assume that 

neurons only wholly activate (neurons can partially activate depending on the activation 

function, but in this example each neuron either outputs a 1 or a 0) (Figure 

3-7


).

Figure 3-6.  An example of what an artificial neural network can look like

Chapter 3   IntroduCtIon to deep LearnIng




78

The input layer takes all of the corresponding inputs and produces an output that 

is linked to the first hidden layer. The outputs of the nodes that activate in the input 

layer are now the inputs of the hidden layer, and the new data flows correspondingly 

(Figure 

3-8


).

Figure 3-7.  The input data runs through the input layer, and selective nodes fire 

based on the input received

Chapter 3   IntroduCtIon to deep LearnIng




79

Hidden layer 1 processes the data in a similar fashion to the input layer, just with 

different parameters for activation function, weight, bias, etc. The data passes through 

this layer and the output of this layer becomes the input for the next hidden layer. In this 

case, only two nodes activate based on the input from the previous layer (Figure 

3-9


).

Figure 3-8.  The outputs from the activated neurons in the input layer pass on 

to the first hidden layer. These outputs are now the inputs of the next layer, and 

selective neurons fire based on this input

Chapter 3   IntroduCtIon to deep LearnIng




80

Hidden layer 2 processes the data and sends the data to a new layer called the output 

layer, where only one of the nodes in the layer will be activated. In this case, the first 

node in the output layer is activated (Figure 

3-10

).

Figure 3-9.  This process repeats with hidden layer 2



Chapter 3   IntroduCtIon to deep LearnIng


81

The nodes in the output layer can represent the different labels that you want to give 

to the input data. For example, in the iris dataset, you can take various measurements of 

an iris flower and train an artificial neural network on this data to classify the species of 

the flower.

Upon initialization, the weights of the model will be far from ideal. Throughout the 

training process, the data flow from the model goes forward (left to right from input to 

output), and then backwards in what is known as 




Download 26,57 Mb.

Do'stlaringiz bilan baham:
1   ...   62   63   64   65   66   67   68   69   ...   283




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish