Beginning Anomaly Detection Using


IURP VNOHDUQPHWULFV LPSRUW



Download 26,57 Mb.
Pdf ko'rish
bet192/283
Sana12.07.2021
Hajmi26,57 Mb.
#116397
1   ...   188   189   190   191   192   193   194   195   ...   283
Bog'liq
Beginning Anomaly Detection Using Python-Based Deep Learning

IURP

VNOHDUQPHWULFV



LPSRUW

URFBDXFBVFRUH

SUHGV 7&1SUHGLFW [BWHVW

DXF URFBDXFBVFRUH QSURXQG SUHGV \BWHVW

SULQW

$8&^`IRUPDW DXF



Figure 7-64.  Code to check the AUC score given the rounded predictions and the 

test sets

Chapter 7   temporal Convolutional networks




295

That’s a nice AUC score! So for both the encoder-decoder TCN and dilated TCN 

architectures, you’ve managed to attain AUC scores of over 98% on the credit card 

data set in a supervised setting. Although both models trained and performed in a 

supervised setting, since the anomalies and the normal entries were labeled as such, 

the key takeaway is that TCNs are incredibly quick to train with GPUs and can perform 

really well.

 Summary

In this chapter, we discussed temporal convolutional networks and showed how they 

fare when applied to anomaly detection.

In the next chapter, we will look at practical use case of anomaly detection.



Figure 7-65.  The generated AUC score

Chapter 7   temporal Convolutional networks




297

© Sridhar Alla, Suman Kalyan Adari 2019 

S. Alla and S. K. Adari, Beginning Anomaly Detection Using Python-Based Deep Learning,  

https://doi.org/10.1007/978-1-4842-5177-5_8




Download 26,57 Mb.

Do'stlaringiz bilan baham:
1   ...   188   189   190   191   192   193   194   195   ...   283




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish