Beginning Anomaly Detection Using


Anomaly Detection with the ED-TCN



Download 26,57 Mb.
Pdf ko'rish
bet189/283
Sana12.07.2021
Hajmi26,57 Mb.
#116397
1   ...   185   186   187   188   189   190   191   192   ...   283
Bog'liq
Beginning Anomaly Detection Using Python-Based Deep Learning

 Anomaly Detection with the ED-TCN

Let’s put this model to the test by applying it to the credit card dataset. Once again, this 

example is another instance of 

supervised learning, so you will have both anomalies 

and normal data labeled.

First, begin by importing all of the necessary modules (see Figure 

7-53


).

4   2   


6

7   1   6   9   5

4   4   2   2

6   6

Figure 7-51.  This process is repeated with the third entry in the input vector to 

form the next third pair of entries in the output vector

4   2   6   7   1   6   9   5

4   4   2   2   6   6   7   7   1   1   6   6   9   9   5   5 

Figure 7-52.  The output vector after the upsampling operation compared to the 

original input vector below it

Chapter 7   temporal Convolutional networks




287

Next, load your data and preprocess it. Notice that the steps are basically the same as 

in the first example (see Figure 

7-54


).


Download 26,57 Mb.

Do'stlaringiz bilan baham:
1   ...   185   186   187   188   189   190   191   192   ...   283




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish