Beginning Anomaly Detection Using



Download 26,57 Mb.
Pdf ko'rish
bet171/283
Sana12.07.2021
Hajmi26,57 Mb.
#116397
1   ...   167   168   169   170   171   172   173   174   ...   283
Bog'liq
Beginning Anomaly Detection Using Python-Based Deep Learning

Figure 7-2.  The filter weights associated with this one-dimensional 

convolutional layer

Input:


1   0.2   0.1

Filter Weights:

Output:

10   5   15  

20   10   20



10 + 1 + 1.5

*

=



12.5

Figure 7-3.  How the first entry of the output vector is calculated using the filter 

weights. The filter weights are multiplied element-wise with the first three entries in 

the input, and the results are summed up to produce the output value

Chapter 7   temporal Convolutional networks




261

Input:


1   0.2   0.1

Filter Weights:

Output:

10

5   15   20

10   20

5 + 3 + 2

*

=



12.5

10

Figure 7-4.  How the second entry of the output vector is calculated using the 

filter weights. The procedure is the same as in Figure 

7-3

, but the filter weights are 

shifted right one

Input:


Filter Weights:

Output:


10 5

15   20 10

20

15 + 4 + 1



1   0.2   0.1

*

=



12.5   10

20

Figure 7-5.  How the third entry of the output vector is calculated using the filter 

weights

Input:


Filter Weights:

Output:


10 5 15

20 10 20

12.5   10   20



24

20 + 2 + 2

1   0.2   0.1

*

=



Figure 7-6.  How the last entry of the output vector is calculated using the filter 

weights

Chapter 7   temporal Convolutional networks




262

Now we have the output of the one-dimensional convolutional layer. These 

one-dimensional convolutional layers are quite similar to how two-dimensional 

convolutional layers work, and they comprise nearly the entirety of the two different 

TCNs we will look at: the 


Download 26,57 Mb.

Do'stlaringiz bilan baham:
1   ...   167   168   169   170   171   172   173   174   ...   283




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish