Beginning Anomaly Detection Using


Problems with transfer learning



Download 26,57 Mb.
Pdf ko'rish
bet170/283
Sana12.07.2021
Hajmi26,57 Mb.
#116397
1   ...   166   167   168   169   170   171   172   173   ...   283
Bog'liq
Beginning Anomaly Detection Using Python-Based Deep Learning

Problems with transfer learning: First, let’s define what transfer 

learning is. Transfer learning is when a model has been trained for 

one particular task (classifying vehicles for example), and has the last 

layer(s) taken out and retrained completely so that the model can be 

used for a new classification task (classifying animals, for example).

In computer vision, there are some really powerful models, such 

as the inception-v3 model, that have been trained on powerful 

GPUs for quite some time in order to achieve the performances 

that they do. Instead of training our own CNN from the ground up 

(and most of us don’t have the GPU hardware or the time to spend 

in long training an extremely deep model like inception-v3), we 

can simply take inception-v3, for example, which is really good 

at extracting features out of images, and train it to associate the 

features that it extracts with a completely new set of classes. This 

process takes a lot less time since the weights in the entire network 

are already well optimized, so you’re only concerned with finding 

the optimal weights for the layers you are retraining.

That’s why transfer learning is such a valuable process; it allows us 

to take a pretrained, high-performance model and simply retrain 

the last layer(s) with our hardware and teach the model a new 

classification task (for CNNs).

Going back to TCNs, the model might be required to remember 

varying levels of sequence history in order to make predictions. 

If the model did not have to take in as much history in the old task 

to make predictions, but in the new task it had to receive even 

more/less history to make predictions, that would cause issues 

and might lead the model to perform poorly.

In a one-dimensional convolutional layer, we still have parameter 

k to determine the 

size of our kernel, or filter. The way the convolutional layer works is pretty similar to the 

two-dimensional convolutional layer you looked at in Chapter 

3

, but we are only dealing 



with vectors in this case.

Here’s an example of what the one-dimensional convolutional operation looks like. 

Assuming an input vector defined as in Figure 

7-1


,

Chapter 7   temporal Convolutional networks




260

and a filter initialized as in Figure 

7-2

,

the output of the convolutional layer is calculated as shown in Figure 



7-3

, Figure 

7-4



Figure 



7-5

, and Figure 

7-6

.

10   5   15   20   10   20





Figure 7-1.  A vector x defined with these corresponding values. This is the input 

vector

1   0.2   0.1

Filter Weights


Download 26,57 Mb.

Do'stlaringiz bilan baham:
1   ...   166   167   168   169   170   171   172   173   ...   283




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish