References
[1] Choi SUS. Enhancing thermal conductivity of fluids with
nanoparticles. ASME Fluids Eng Div. 1995; 231: 99–105.
[2] Saidur R, Leong KY, Mohammad HA. A review on applications
and challenges of nanofluids. Renewable and Sustainable Energy
Reviews. 2011;15(3):1646–68.
[3] Huminic G, Huminic A. Application of nanofluids in heat
exchangers: a review. Renewable and Sustainable Energy Reviews.
2012;16(8):5625–38.
[4] Paul G, Chopkar M, Manna I, Das PK. Techniques for measuring
the thermal conductivity of nanofluids: a review. Renewable and
Sustainable Energy Reviews. 2010;14(7):1913–24.
[5] Sarkar J.A Сritical review on convective heat transfer
correlations of nanofluids. Renewable and Sustainable Energy Reviews.
2011;15(6):3271–7.
[6] Masuda H, Ebata A, Teramae K, Hishinuma N. Alteration of
thermal conductivity and viscosity of liquid by dispersing ultrafine
particles (dispersion of Al2O3, SiO2, and TiO2 ultrafine particles).
Netsu Bussei 1993; 4(4): 227–33.
[7] Lee S, Choi SUS, Li S, Eastman JA. Measuring thermal
conductivity of fluids containing oxide nanoparticles. Journal of Heat
Transfer. 1999;121:280–9.
[8] Wang X, Xu X, Choi SUS. Thermal conductivity of nanoparticle–
fluid mixture. J Thermophys Heat Transfer 1999;13(4):474–80.
[9] Xie H, Wang J, Xi T, Liu Y, Ai F, Wu Q. Thermal conductivity
enhancement of suspensions containing nanosized alumina particles. J
Appl Phys 2002;91 (7):4568–72.
[10] Das SK, Putra N, Thiesen P, Roetzel W. Temperature dependence
286
of thermal conductivity enhancement for nanofluids. ASME J Heat
Transfer 2003;125 (4):567–74.
[11] Wen D, Ding Y. Experimental investigation into the pool boiling
heat transfer of aqueous based γ-allumina nanofluids. J Nanopart Res
2005;7:265–74.
[12] Li CH, Peterson GP. Experimental investigation of temperature
and volume fraction variations on the effective thermal conductivity of
nanoparticle suspensions (nanofluids). Journal of Applied Physics.
2006;99(8):1–8.
[13] Barbes V, Paramo R, Blanco E, Pastoriza-Gallego MJ, Pineiro
MM, Casanova C. Thermal conductivity and specific heat capacity
measurements of Al2O3 nanofluids. J Therm Anal Calorim
2013;111:1615–25.
[14] Murshed SMS, Leong KC, Yang C. Enhanced thermal conductivity
of TiO2-water based nanofluids. Int J Therm Sci 2005;44(4):367–73.
[15] Palabiyik I, Musina Z, Witharana S, Ding Y. Dispersion stability
and thermal conductivity of propylene glycol-based nanofluids. J
Nanopart Res 2011;13:5049–55.
[16] Kole M, Dey TK. Effect of prolonged ultrasonication on the
thermal conduc- tivity of ZnO–ethylene glycol nanofluids. Thermochim
Acta 2012;535:58–65.
[17] Ismaya MJL, Doroodchib E, Moghtaderia B. Effects of colloidal
properties on sensible heat transfer in water-based titania nanofluids.
Chem Eng Res Des 2013;91:426–36.
[18] Eastman JA, Choi SUS, Li S, Yu W, Thompson LJ. Anomalously
increased effective thermal conductivities of ethylene glycol-based
nanofluids contain- ing copper nanoparticles. Appl Phys Lett
2001;78(6):718–20.
[19] Hong TK, Yang HS, Choi CJ. Study of the enhanced thermal
conductivity of Fe nanofluids. J Appl Phys 2005;97:064311.
[20] Baheta AT, Woldeyohannes AD. Effetct of particle size on
effective thermal conductivity of nanofluids. Asian J Sci Res
2013;6(2):339–45.
[21] Mintsa HA, Roy G, Nguyen CT, Doucet D. New temperature
dependent thermal conductivity data for water-based nanofluids. Int J
Therm Sci 2009;48(2):363–71.
[22] Xie H, Wang J, Xi T, Liu Y. Thermal conductivity of suspensions
containing nanosized SiC particles. Int J Thermophys 2002;23(2):571–
80.
[23] Timofeeva EV, Routbort JL, Singh D. Particle shape effects on
thermophysical properties of alumina nanofluids. J Appl Phys
2009;106(1):014304.
287
Do'stlaringiz bilan baham: |