O‘zbekiston respublikasi oliy va o‘rta maxsus ta’lim vazirligi urganch davlat universitetifizika-matematika fakulteti matematika yo‘nalishi 194 guruh talabasi jumaniyozov ulug'bekning differensial geometriya va topologiya fanidan mavzu



Download 1,28 Mb.
bet4/8
Sana07.01.2022
Hajmi1,28 Mb.
#328229
1   2   3   4   5   6   7   8
Bog'liq
Jumaniyozov Ulug'bek

FRENE FORMULALARI

Tabiiy parametrlash usuli bilan tenglama yordamida berilgan egri chiziq urinma, bosh normal, binormallari bo‘yicha yo‘nalgan birlik vektorlar va ularning hosila vektorlari orasidagi bog‘liqlikni ifodalaydigan Frene formulalari ushbu ko‘rinishda bo‘ladi:





Misol va masalalarning yechish namunalari

1-masala. Ushbu tenglama bilan berilgan vint chizig‘ining

M 0 (a; 0; 0) nuqtasidagi egriligi va buralishi hisoblansin.

Yechish. Bu masalani yechish uchun chiziqning berilgan M 0 (a; 0; 0)

nuqtasiga parametrning qanday qiymati mos kelishini, ya’ni

sistemaning yechimini topishimiz kerak. Ravshanki, t0=0 sistemaning yagona yechimi bo‘ladi. Demak, parametrning t0=0 qiymatiga chiziqning M 0 (a; 0; 0) nuqtasi mos kelar ekan. Endi, talab qilinayotgan tenglamalarni tuzish uchun kerak bo‘ladigan kattaliklarni, hosilalarning parametrning t0=0 qiymatiga mos keluvchi qiymatlarini hisoblaymiz.

Ravshanki, birinchi ikkinchi va uchinchi tartibli hosilalar



,

formulalardan foydalanib berilgan chiziqning M 03 (a; 0; 0) nuqtasidagi egriligi va buralishini hisoblaymiz:





Endi o‘qlari mos ravishda , , vektorlar yo‘nalishlariga ega ekanligidan foydalanib

tenglamalarni hosil qilamiz. Bu tenglamalarda faqat egrilik va buralish qatnashmokda. Demak, chiziqni aniqlash uchun uning hamma nuqtalarida egrilik va buralishni bilishimiz yetarli.

Endi shu masalani muhokama qilaylik. Bizga parametrlangan regulyar egri chiziq berilgan bo‘lsa, uning ixtiyoriy nuqtasida uchta funksiyalar aniqlangan. Bu funksiyalar uzlua munosabatlar o‘rinlidir. Agar parametr sifatida yoy uzunligini olsak, funksiyalar soni 2 ta bo‘ladi.



Teorema-14. Ikkita regulyar egri chiziqlarning yoylari va mos ravishda

tenglamalar yordamida berilib,

tenglik ixtiyoriy uchun o‘rinli bo‘lsin. Bundan tashqari har bir uchun tengliklar o‘rinli bo‘lsa, yagona harakat mavjud bo‘lib,



munosabat o‘rinli bo‘ladi. Isbot. Bu chiziqlarning uzunliklari teng bo‘lgan

belgilash kiritib, chiziqlar tenglamalarini tabiiy parametr yordamida yozamiz. Shunda ularning tenglamalari

ko‘rinishda bo‘ladi. Endi har bir chiziqda tabiiy parametrning S=0 qiymatiga mos keluvchi nuqtalarini mos ravishda va bilan belgilaymiz. Bu nuqtalardagi Frene uchliklari mos ravishda va vektorlardan iborat bo‘ladi. Bu uchliklar fazoda bir xil orientasiyalarni aniqlagani uchun shunday harakat mavjudki, u nuqtaga nuqtaga, vektorlarni mos ravishda vektorlarga o‘tkazadi. Biz tenglikni isbotlaymiz. Buning uchun nuqtaning radius-vektorini bilan belgilab, tenglama bilan aniqlan¬gan regulyar egri chiziqning Frene uchligini bilan belgilaymiz. Shunda biz tengliklarga ega bo‘lamiz. Harakatda vektorlarning skalyar ko‘paytmasi saqlangani uchun

tengliklar o‘rinli bo‘ladi. Demak, tengliklar ham o‘rinlidir. Endi tenglikni isbotlash uchun

tenglikni isbotlash uchun tenglik o‘rinli. Bu funksiyani differensiallaymiz

va Frene formulalaridan foydalanib,


tenglikni hosil qilamiz. Bu yerda tenglikni olamiz bu yerda . Demak, vа tenglik o‘rinli bo‘ladi. Bundan tenglikni olamiz bu erda o‘zgarmas vektor bo‘lgani uchun tenglikdan munosabat kelib chiqadi. Shunday qilib, biz munosabatni isbotladik.

Teorema-1.1. Ikkita uzluksiz va funktsiyalar oraliqda aniqlangan va bo‘lsa, tabiiy parametr yordamida parametrlangan regulyar egri chiziq mavjud bo‘lib, uning egriligi hamda buralishi mos ravishda , funktsiyalarga tengdir.

Isbot. Bizga nuqta va ortonormal sistema berilgan bo‘lsin. vektor funktsiyalarga nisbatan

(1)

differentsial tenglamalar sistemasini



boshlang‘ich shartlar bilan qaraylik. Differentsial tenglamalar sistemasining echimi mavjudligi va yagonaligi haqidagi teoremaga asosan bu sistemaning oraliqda aniqlangan yagona echimi mavjud. Boshlang‘ich shartlarga asosan bo‘lganda bu uchlik ortonormal sistemani tashkil qiladi. Biz ixtiyoriy uchun bu uchlikning ortonormal ekanligini ko‘rsatamiz. Buning uchun bilan birinchi satri vektordan, ikkinchi satri vektordan va uchinchi satri vektordan iborat matritsani belgilasak, (1) sistemani



(2)

ko‘rinishda yoza olamiz. Bu erda



Endi vektorlarning ortonormal sistema ekanligini ko‘rsatish uchun matritsaning ortogonal matritsa ekanligini ko‘rsatish etarlidir. Demak, ixtiyoriy uchun



tenglikni isbotlashimiz zarur va etarli. Bu erda transpo¬nirlangan matritsa, birlik matritsadir.

Biz (2) tenglikdan

tenglikni olamiz. Bu tenglikni hisobga olib,



ko‘paytmani differentsiallaymiz. Shunda



tenglikni hosil qilamiz. Bu tenglikda munosabatni hisobga olib,



tenglikni hosil qilamiz. Demak, o‘zgarmas matritsa va bo‘lganligi uchun tenglik hamma s lar uchun o‘rinlidir.

Shunday qilib, ixtiyoriy vektorlar ortonormal sistemani tashkil qiladi.

Endi tenglama bilan chiziqni aniqlaymiz. Bu erda nuqtaning radius-vektoridir. Bu chiziq uchun







bo‘lganligi uchun



munosabat kelib chiqadi. Demak, bu chiziq uchun buralish aniqlangan va



tenglik o‘rinlidir. Demak, chiziq teorema tasdig‘ini qanoatlantiradi. Agar nuqta o‘rniga boshqa nuqta olsak, biz teorema shartini qanoatlantiruvchi va nuqtadan chiquvchi chiziqni hosil qilamiz. Lekin, teorema-12 ga ko‘ra, harakat mavjud bo‘lib, bo‘ladi




Download 1,28 Mb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6   7   8




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish