matematik model deb ataladi.
O'rganilayotgan obyektning matematik munosabatlar va belgilar orqali ifodalanish jarayoni matematik modellashtirish deb ataladi.
Awalgi darsda ko'rib o'tilgan kitob saliifasidagi satrlar sonini topish masalasi kvadrat tenglama ko'rinishida ifodalandi. Demak, masalani kvadrat tenglama ko'rinishida ifodalash jarayoni matematik modellashtirish, mos tenglama esa masalaning matematik modeli bo'lar ekan. Shuningdek, Arximed kuchi, Pifagor teoremasi va perimetr formulasi ham matematik model bo'ladi.
Matematik modellashtirish jarayoni qadimdan astronomiya, kimyo va fizika fanlarida qo'llanib kelingan. Misol sifatida Neptun say-yorasining kashf etilishini olish mumkin. 1846-yilda fransuz astronomi U.Leverye Uran sayyorasining g'ayritabiiy harakatlanishiga Quyosh sistemasining o'sha paytgacha noma'lum bo'lgan sayyorasi sababchi ekanligini matematik isbotlab bergan. Shu yili Leveryening ko'rsat-malariga asoslanib nemis astronomi Galley Neptun sayyorasini teleskop orqali kuzata olgan.
Kimyoviy reaksiyalarning matematik modeliga misollar:
xlor bilan natriyning birikish reaksiyasi: 2Na + Cl2 = 2NaCl;
tabiiy gazdan oltingugurt ajratib olish reaksiyasi: 2H2S + 02= =2H20 + 2S.
Fizik hodisalarning matematik modeliga quyidagilar misol bo'ladi:
Nyutonning ikkinchi qonuni, ya'ni jismga ta'sir etayotgan kuchning formulasi: F = ma, bunda m — jism massasi, a — tezlanish;
Nyutonning butun olam tortishish qonuni: , bunda
mv m2 — bir-biriga ta'sir etayotgan jismlar massalari, R — ular orasidagi masofa, G — gravitatsiya doimiysi.
Hozirgi kunda ham modellashtirishni kimyo, biologiya, tibbiyot, iqtisod kabi fan yo'nalishlarida keng qo'llanib, juda qiziqarli natijalar olinmoqda.
Optimal modellar, ishlab chiqarishni tashkil qilishda ularning optimal variantini topishga xizmat qiladi. Boshqacha qilib aytganda, ular optimallik mezonlari bo’yicha maqsad funksiyasiga maksimal yoki minimal qiymat bera oladi Optimal modellar, ishlab chiqarishni tashkil qilishda ularning optimal variantini topishga xizmat qiladi. Boshqacha qilib aytganda, ular optimallik mezonlari bo’yicha maqsad funksiyasiga maksimal yoki minimal qiymat bera oladi
Matematik model tizimni matematik izohlash uchun ishlatiluvchi abstrakt model boʻlib, maʼlum bir hodisa va jarayonni matematik formula va bogʻlanishlar orqali tushuntirib beradi. Bu modellarning eng sodda korinishi chiziqli regressiya formulalari bolib, ular {\displaystyle y=b0+b1x}{\displaystyle y=b0+b1x} koʻrinishida namoyon boʻladi.
Matematik model - matematik timsollar, belgilar va hodisalar sinfining taxminan namunasi, bayoni. Obʼyektiv dunyo hodisalarini toʻliq aks ettiradigan Matematik model qurish mumkin emas, lekin istalgan aniqlikda toʻgʻri aks ettiradigan Matematik model qurish mumkin. Matematik model 4 bosqichga boʻlinadi: modelning asosiy obʼyektlarini bogʻlovchi qonunlarni shakllantirish; Matematik model olib keladigan matematik masalalarni yechish; modelning nazariyaga mos kelishini aniqlash, modelni tahlil qilish va takomillashtirish. Matematik modelning klassik namunalaridan biri suyuqlik harakatini oʻrganishdir. Dastlab, 18-asrda suyuqlik qisilmaydigan bir jinsli, faqat massa va energiya saqlanishi qonuniga boʻysunadigan modda ("ideal qisilmaydigan suyuqlik") deb olingan. Shularga asoslanib qurilgan Matematik modelda suyuqlik harakati maxsus differensial tenglamalar bilan ifodalangan. Keyinchalik bu Matematik model takomillashtirilib, suyuqliknMatematik model tizimni matematik izohlash uchun ishlatiluvchi abstrakt model boʻlib, maʼlum bir hodisa va jarayonni matematik formula va bogʻlanishlar orqali tushuntirib beradi. Bu modellarning eng sodda korinishi chiziqli regressiya formulalari bolib, ular {\displaystyle y=b0+b1x}{\displaystyle y=b0+b1x} koʻrinishida namoyon boʻladi.
Matematik model - matematik timsollar, belgilar va hodisalar sinfining taxminan namunasi, bayoni. Obʼyektiv dunyo hodisalarini toʻliq aks ettiradigan Matematik model qurish mumkin emas, lekin istalgan aniqlikda toʻgʻri aks ettiradigan Matematik model qurish mumkin. Matematik model 4 bosqichga boʻlinadi: modelning asosiy obʼyektlarini bogʻlovchi qonunlarni shakllantirish; Matematik model olib keladigan matematik masalalarni yechish; modelning nazariyaga mos kelishini aniqlash, modelni tahlil qilish va takomillashtirish. Matematik modelning klassik namunalaridan biri suyuqlik harakatini oʻrganishdir. Dastlab, 18-asrda suyuqlik qisilmaydigan bir jinsli, faqat massa va energiya saqlanishi qonuniga boʻysunadigan modda ("ideal qisilmaydigan suyuqlik") deb olingan. Shularga asoslanib qurilgan Matematik modelda suyuqlik harakati maxsus differensial tenglamalar bilan ifodalangan. Keyinchalik bu Matematik model takomillashtirilib, suyuqlikning qisiluvchanligi, yopishqoqligi, molekulyar tuzilishi, uyurma hosil boʻlishi, issikdik, elektr va boshqa taʼsirlar hisobiga olingan differensial tenglamalari tuzilgan. Matematik model fizika, astronomiya, biol., iqtisodiyot, tibbiyot va boshqa sohalarda asosiy tadqiqot usuli hisoblanadi.
Do'stlaringiz bilan baham: |