O’zbekiston respublikasi oliy va o’rta maxsus ta’lim vazirligi buxoro davlat universiteti fizika –matematika fakulteti “Matematika” kafedrasi Xayriyeva Nargiza


t =o gipertekislikda yotuvchi nuqtasidagi qiymati bilan ustma-ust tushadi, Lekin bu nuqtada (2.1.6) shartga asosan u = 0. Bundan nuqta D



Download 1,17 Mb.
bet11/18
Sana03.07.2022
Hajmi1,17 Mb.
#736589
1   ...   7   8   9   10   11   12   13   14   ...   18
Bog'liq
baza diplom ishi 1

    Bu sahifa navigatsiya:
  • Izoh.
t =o gipertekislikda yotuvchi nuqtasidagi qiymati bilan ustma-ust tushadi, Lekin bu nuqtada (2.1.6) shartga asosan u = 0. Bundan nuqta D sohaning ixtiyoriy nuqtasi bo’lgani uchun, bo’ladi.
Shu bilan to’lqin tenglamasi uchun Koshi masalasi yechimining
yagonaligi isbot bo’ldi.
Bu yagonalik t < 0 bo’lgan holda ham o’z kuchini saqlaydi, ya’ni D soha shar va yasovchilari Ot o’q bilan – 45 ° burchak tashkil qilib, t < 0 yarim fazoda yotuvchi xarakteristik konus bilan chegaralangan bo’lsa ham yechim bu sohada birdan-bir aniqlanadi.
funksiya (2.1.1) tenglamaga qo’yilgan Koshi masalasining yechimi bo’lib, tenglamaning o’ng tomoni tayinlangan funksiya bo’lsin.
Isbotlangan teoremadan shunday narsa kelib chikadiki, funksiyaning ixtiyoriy nuqtadagi qiymati boshlang’ich funksiyalarning faqat shardagi qiymatlari orqali aniqlanadi.
Bu shar nuqta uchun bog’iqlik sohasi deyiladi.
Agar bo’lsa, nuqta uchun botiqlik sohasi shardan iborat bo’ladi.
Izoh. U va lar qiymatlarining sharda berilishi, yechimning asosga ega bo’lgan, yasovchilari Ot o’q, bilan ±45 ° burchak tashkil qiluvchi va o’qi Ot ga parallel bo’lgan konuslardan tashqarida
yotuvchi hech qanday A nuqtada aniqlamaydi.
Buni isbotlash uchun shunday yechim mavjud bo’lib, lar sharda nolga teng bo’lsa ham bo’lishini ko’rsatish yetarlidir.
ixtiyoriy ikki marta differensiallanuvchi funksiya bo’lib,
(2.1.8)
bo’lsa,
(2.1.9)
funksiya (2.1.5) tenglamani qanoatlantiradi.
Haqiqattan,

Bundan darhol, (2.1.8) shartga asosan

(2.1.9) funksiya har qanday
(2.1.10)
gipertekislikda o’zgarmas qiymatga ega bo’lib, (2.1.10) gipertekisliklarning har biri Ot o’q bilan 45° burchak tashkil qiladi. O’zgarmas sonlarni shunday tanlab olamizki, (2.1.10) gipertekisliklar oilasining A nuqtadan o’tadigan gipertekisligi sharni kesib o’tmasin. Bundan so’ng, funksiyani shunday tanlab olish mumkinki. funksiya A nuqtada noldan farqli bo’lib, sharda nolga teng bo’lsin. U holda

izlangan yechim bo’ladi.
Furye almashtirishidan foydalanib oshkor ko’rinishidagi yechimini topamiz. Keyingi to’lqin tenglamasi berilgan bo’lin (bir jinsli yoki bir jinsli emas)

va

Dastlab bir jinsli tenglama yechimini topamiz. Bu uchun (2.1.10) ga quyidagi tenglamani qaraymiz.

Ushbu tenglama quyidagi boshlang’ich tenglama bilan olingan

Bu tenglamaning yechimi quyidagi ko’rinishga ega:

t ni parametr sifatida qaraymiz. Quyidagi belgilash kiritamiz.


Download 1,17 Mb.

Do'stlaringiz bilan baham:
1   ...   7   8   9   10   11   12   13   14   ...   18




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2025
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish