O'zbekiston respublikasi axborot texnologiyalari va kommunikatsiyalarini



Download 72,15 Kb.
bet1/3
Sana26.02.2022
Hajmi72,15 Kb.
#470578
  1   2   3
Bog'liq
birinchi tartibli differensiallar


O'ZBEKISTON RESPUBLIKASI AXBOROT


TEXNOLOGIYALARI VA KOMMUNIKATSIYALARINI
RIVOJLANTIRISH VAZIRLIGI
MUHAMMAD AL-XORAZMIY NOMIDAGI
TOSHKENT AXBOROT TEXNOLOGIYALARI UNIVERSITETI
FARG’ONA FILIALI
“KOMPYUTER INJINERING” FAKULTETI
"TABIY FANLAR"
KAFEDRASI
"DIFFERENSIAL TENGLAMALAR"
FANIDAN

Bajardi: 711-21 guruh talabasi
TESHABOYEV TURSUNALI
NURMAXAMMADOVICH

Qabul qildi: ____________________


REJA:



  1. Kirish

  2. Klero va Lagranj tenglamalari

  3. O`zgaruvchilari ajraladigan differensial tenglamalar

  4. Bernulli tenglamasi

  5. Xulosa

TARIF: Erkli o’zgaruvchi,nomalum funsiya va uning xosila хосила


(differensial)larine bog’lovchi
/(x, у, у', у", ..., у (п>) = 0
munosabat oddiy differensial tenglama deyiladi.
x-erkli o’zgaruvchi
y-nomalum funksiya
y'-nomalum funksiyaning 1 tartibli xosilasi
y(n)- nomalum funksiyaning (n) tartibli xosilasi
Differensial tenglamaga kiruvchi xosila (differensial)larning tng yuqori tartibi differensial tenlamaning tartibi deyiladi.
Differensial tenglamaning yechimi deb tenglamaga qo’yganda uni ayniyatga aylantihadigan differensiallanuvchi у = ц>(х)
funksiyaga aytiladi.


BIRINCHI TARTIBLI DIFFERENSIAL TENGLAMALARNING MAXSUS YECHIMI . KLERO TENGLAMASI. LANGRANJ TENGLAMASI

1. 1-tur xosmas integral
funksiya [a,+) oraliqda aniqlangan va uzluksiz bo`lsin (1-rasm). integralni qaraymiz.
[a,+) oraliqda funksiyaning 1-tur xosmas integrali deb, qu-yidagi

limitga aytiladi va kabi belgilanadi, ya`ni
(1)
Agar limit mavjud va chekli bo`lsa, u holda xosmas integral yaqinlashuvchi deyiladi. Bu limit integralning qiymati sifatida qabul qilinadi.
Agar limit mavjud bo`lmasa yoki xususan cheksiz bo`lsa, xosmas integral uzoqlashuvchi deyiladi.
Xuddi shuningdek, 1-tur xosmas integral (-,b] oraliq uchun kabi aniqlanadi (2-rasm).
Faraz qilaylik, funksiya (-;+) oraliqda aniqlangan va uzluksiz hamda c(-;+) bo`lsin. U holda xosmas integrallar:

yig`indisi funksiyaning (-;+) oraliqdagi 1-tur xosmas integrali deb ataladi va kabi belgilanadi.
(2)
Shunday qilib, (2) yig`indidagi har bir xosmas integral yaqinlashuvchi bo`lsa, xosmas integral ham yaqinlashuvchi bo`ladi. Bu holda (2) yig`indi s nuqtaning tanlanishiga bog`liq bo`lmaydi.
1) .



1-rasm 2-rasm
Demak, ushbu integral uzoqlashuvchi ekan.

2) 




funksiya [a,b) oraliqda aniqlangan va uzluksiz bo`lib, x = b nuqta atrofida chegaralanmagan bo`lsin (3-rasm). U holda



limitga [a,b) oraliqda funksiyasining 2-tur xosmas integrali deyiladi:


(3)

Agar (3) limit mavjud va chekli bo`lsa, xosmas integral yaqinlashuvchi deyiladi. Agar limit mavjud bo`lmasa yoki cheksizga teng bo`lsa, xosmas integral uzoqlashuvchi deb ataladi. (a,b] oraliqda aniqlangan, uzluksiz va x = a nuqta atrofida chegaralanmagan funksiya uchun xosmas integral xuddi shuningdek aniqlanadi (4-rasm):







funksiya [a, b] oraliqning c[a,b] nuqtasidan tashqari barcha nuqtalarida aniqlangan va uzluksiz bo`lib, x = c nuqtaning atrofida





3-rasm 4- rasm
chegaralanmagan bo`lsin (5-rasm). U holda bu funksiyaning [a, b] kesmadagi 2-tur xosmas integrali xosmas integrallarning yig`indisi kabi aniqlanadi:
(5)

5-rasm
Agar (5) formulaning o`ng tarafidagi har bir xosmas integral yaqinlashuvchi bo`lsa, funksiyadan [a,b] oraliqda olingan xosmas integral ham yaqinlashuvchi bo`ladi.


Misollar:
1)  xosmas integralni hisoblang. Integral ostidagi funksiya x = 1 nuqtada uzilishga ega. Demak,

2)  xosmas integralni hisoblang.
Integral ostidagi funksiya x = 1[0,2] nuqtada 2-tur uzilishga ega. Demak,

Demak, berilgan integral uzoqlashuvchi ekan.

Matematika va uning tatbiqlarining muhim masalalari x ni emas, balki uning biror noma`lum y(x) funksiyasini topish masalasi qo`yilgan va tarkibida x, y(x), shu bilan birga uning y′(x), y"(x),...,y(n)(x) hosilalarini o`z ichiga olgan murakkab tenglamalarni yechishga keltiriladi. Masalan, y′ + 2y - x3 = 0, y" = с·ax, у′" + у = 0.


Erkli o`zgaruvchi x ni, noma`lum y(x) funksiyani va uning n tartibli hosilasiga qadar hosilalarini bog`lovchi tenglamaga n-tartibli oddiy diffcrcnsial tcnglama deyiladi. Yuqoridayozilgan tenglamalar, mos ravishda, birinchi, ikkinchi va uchinchi tartibli differensial tenglamalardir. Umumiy ko`rinishda n-tartibli differensial tenglama

F(x, y, y′, y",..., yn) = 0 (1)


shaklda yoziladi.
(1) tenglamani ayniyatga aylantiruvchi va kamida n marta differensial-lanuvchi har qanday у = f(x) funksiyaga differensial tenglama yechimi deyiladi.
Masalan, у = e-x funksiya y′ + у = 0 differensial tenglama yechimi bo`lib, tenglamaning cheksiz ko`p yechimlaridan biridir. Har qanday у = c·e-x funksiya ham, bu yerda, с - ixtiyoriy o`zgarmas, tenglamani qanoatlantiradi. Ushbu differensial tenglama yechilganda, uning yechimi у = с·e-x ko`rinishdan o`zgacha bo`lishi mumkin emasligini aniqlaymiz. Shu ma`noda, у = с·e-x funksiya uning umumiy yechimi deyiladi. Umumiy yechimda ixtiyoriy o`zgarmas с qatnashgani uchun, tenglama yechimlari to`plami yagona ixtiyoriy с o`zgarmasga bog`liq deyiladi.
O`zgarmas с ga turli son qiymatlar berilganda, uning konkret yoki xususiy yechimlari kelib chiqadi.
у′" = 0 differensial tenglama yechimlarini bevosita qurish mum-kin: y" = c1, y′ = c1x+c2, у = c1x2/2 + c2x + c3. Bu yerda, c1, c2 va c3 ix-tiyoriy o`zgarmaslar bo`lib, ularning har qanday qiymatlarida у = c1x2/2 + c2x + c3 funksiya differensial tenglamani qanoatlantiradi va umumiy yechim bo`lib hisoblanadi. y′"=0 differensial tenglama umumiy yechimi uch ixtiyoriy o`zgarmasga bog`liq va o`zgarmaslar har birining konkret qiymatlarida xususiy yechim hosil bo`ladi.
Yuqoridagi misollardan differensial tenglama umumiy yechimi o`zgarmaslari soni tenglamaning tartibiga teng ekanligini va uning xu-susiy yechimlari umumiy yechimdan o`zgarmaslarining konkret qiy-matlarida kelib chiqishini xulosa qilish mumkin.
Differensial tenglama yechimlarini qurish jarayoniga differensial tenglamani integrallash deb yuritiladi. Differensial tenglamani integrallab, masalaning qo`yilishiga qarab, uning yoki umumiy yechimi tuziladi yoki xususiy yechimi topiladi.
Birinchi tartibli differensial tenglama umumiy F(x; y; y) = 0 yoki y hosilaga nisbatan yechilgan
y′ = f(x;y) (2)
ko`rinishda yozilishi mumkin.
Ushbu tenglamalar ham, odatda, cheksiz ko`p yechimga ega bo`lib, ulardan biror-bir xususiy yechimni ajratib olish qo`shimcha shartni talab etadi. Ko`p hollarda ushbu shart Koshi masalasi shaklida qo`yiladi. Koshi masalasi y′ = f(x;y) differensial tenglamaning y/x = x0 = y0 boshlang`ich shartni qanoatlantiravchi yechimini topishdan iborat.
Masala yechimi mavjudlik va yagonalik sharti quyidagi teoremadan aniqlanadi.
Teorema. Agar f(x;у) funksiya boshlang`ich (x0;y0) nuqtaning biror atrofida aniqlangan, uzluksiz va uzluksiz дf/ду xususiy hosilaga ega bo`lsa, u holda (x0;y0) nuqtaning shunday bir atrofi mavjudki, ushbu atrofda y` = f(x;y) differensial tenglama uchun y/x = x0 = y0 boshlang`ich sharth Koshi masalasi ycchimi mavjud va yagonadir.
Differensial tenglamaning umumiy va xususiy yechimlari tushunchalariga aniqlik kiritamiz.
Agar boshlang`ich (x0;y0) nuqtaning berilishi (2) tenglama yechimining yagonaligini aniqlasa, u holda ushbu yagona yechimga xususiy yechim deyiladi. Boshqacha aytganda boshlang`ich shart bir qiymatni aniqlaydigan yechim xususiy yechimdir.
Differensial tenglamaning barcha xususiy yechimlari to`plamiga esa, umumiy yechim deyiladi.
Odatda, umumiy yechim yoki oshkor y - φ(x,c) yoki oshkormas φ(х,у,с) = 0 ko`rinishda yoziladi. Boshlang`ich (x0;y0) shart asosida с o`zgarmas у0 = φ(х0;с) tenglamadan topiladi.
Tenglamaning umumiy integral) (yoki yechimi) deb, с o`zgarmasning turli qiymatlarida barcha xususiy yechimlari aniqlanadigan φ(х,у,с) = 0 munosabatga aytiladi.
Masalan, yechimning mavjudlik va yagonalik teorema shartlari yuqorida ko`rilgan y′ = -y tenglama uchun xy tekislikning har bir nuqtasida bajariladi. Tenglama umumiy yechimi y = c·cx formuladan iborat boiib, har qanday boshlang`ich y/x = x0 = y0 shart mos с o`zgarmas tan-langanda, qanoatlantiriladi. O`zgarmas с y0 = c·c-x0 tenglamadan topiladi va c = y0·ex0.
Differcnsial tenglamani yechish uning umumiy yechimini (yoki umu-miy integralini) topishni anglatadi.
(2) differensial tenglama yechimi mavjudligi va yagonaligini ta`min-laydigan muhim shartlardan дf/дy xususiy hosilaning uzluksizligidir. Ba`zi bir nuqtalarda ushbu shart bajarilmasligi va ular orqali birorta ham integral chiziq o`tmasligi yoki, aksincha, bir nechta integral chiziqlar o`tishi mumkin. Bunday nuqtalarga differensial tenglamaning maxsus nuqtalari deyiladi.
Differensial tenglamaning integral chizig`i faqat uning maxsus nuqtalaridan iborat bo`lishi mumkin. Ushbu egri chiziqlar tenglamaning maxsus yechimlari deb yuritiladi.

Download 72,15 Kb.

Do'stlaringiz bilan baham:
  1   2   3




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish