Food Chemistry 266 (2018) 524–533
532
Cui, L., & Decker, E. A. (2016). Phospholipids in foods: Prooxidants or antioxidants?
Journal of the Science of Food and Agriculture, 96
(1), 18
–
31
.
Di Mattia, C. D., Sacchetti, G., Mastrocola, D., Sarker, D. K., & Pittia, P. (2010). Surface
properties of phenolic compounds and their in
fl
uence on the dispersion degree and
oxidative stability of olive oil O/W emulsions.
Food Hydrocolloids, 24
(6), 652
–
658
.
Frega, N., Mozzon, M., & Lercker, G. (1999). E
ff
ects of free fatty acids on oxidative sta-
bility of vegetable oil.
Journal of the American Oil Chemists' Society, 76
(3), 325
–
329
.
Gopinath, D., Ravi, D., Rao, B., Apte, S., Renuka, D., & Rambhau, D. (2004). Ascorbyl
palmitate vesicles (Aspasomes): Formation, characterization and applications.
International Journal of Pharmaceutics, 271
(1), 95
–
113
.
Gosenca, M., Obreza, A., Pe
č
ar, S., & Ga
š
perlin, M. (2010). A new approach for increasing
ascorbyl palmitate stability by addition of non-irritant co-antioxidant.
AAPS
PharmSciTech, 11
(3), 1485
–
1492
.
Goyal, A., Sharma, V., Upadhyay, N., Gill, S., & Sihag, M. (2014). Flax and
fl
axseed oil: An
ancient medicine & modern functional food.
Journal of Food Science and Technology,
51
(9), 1633
–
1653
.
Guillén, M. A. D., & Cabo, N. (2002). Fourier transform infrared spectra data versus
peroxide and anisidine values to determine oxidative stability of edible oils.
Food
Chemistry, 77
(4), 503
–
510
.
Gülçin,
İ
., Huyut, Z., Elmasta
ş
, M., & Aboul-Enein, H. Y. (2010). Radical scavenging and
antioxidant activity of tannic acid.
Arabian Journal of Chemistry, 3
(1), 43
–
53
.
Huang, S.-W., Frankel, E. N., & German, J. B. (1994). Antioxidant activity of. alpha.-and.
gamma.-tocopherols in bulk oils and in oil-in-water emulsions.
Journal of Agricultural
and Food Chemistry, 42
(10), 2108
–
2114
.
Hudson, B. J., & Lewis, J. I. (1983). Polyhydroxy
fl
avonoid antioxidants for edible oils.
Structural criteria for activity.
Food Chemistry, 10
(1), 47
–
55
.
Khan, M. T., & Martell, A. E. (1967). Metal ion and metal chelate catalyzed oxidation of
ascorbic acid by molecular oxygen. II. Cupric and ferric chelate catalyzed oxidation.
Journal of the American Chemical Society, 89
(26), 7104
–
7111
.
Kittipongpittaya, K., Panya, A., Cui, L., McClements, D. J., & Decker, E. A. (2014).
Association colloids formed by multiple surface active minor components and their
e
ff
ect on lipid oxidation in bulk oil.
Journal of the American Oil Chemists' Society,
91
(11), 1955
.
Kittipongpittaya, K., Panya, A., & Decker, E. A. (2016). Role of water and selected minor
components on association colloid formation and lipid oxidation in bulk oil.
Journal
of the American Oil Chemists' Society, 93
(1), 83
.
Kyriakidis, N. B., & Katsiloulis, T. (2000). Calculation of iodine value from measurements
of fatty acid methyl esters of some oils: Comparison with the relevant American oil
chemists society method.
Journal of the American Oil Chemists' Society, 77
(12),
1235
–
1238
.
Laguerre, M., Bayrasy, C., Panya, A., Weiss, J., McClements, D. J., Lecomte, J., ...
Villeneuve, P. (2015). What makes good antioxidants in lipid-based systems? The
next theories beyond the polar paradox.
Critical Reviews in Food Science and Nutrition,
55
(2), 183
–
201
.
Laguerre, M., Bily, A., Roller, M., & Birtic, S. (2017). Mass transport phenomena in lipid
oxidation and antioxidation.
Annual Review of Food Science and Technology, 8
(1)
.
Litwinienko, G., & Ingold, K. (2003). Abnormal solvent e
ff
ects on hydrogen atom ab-
stractions. 1. The reactions of phenols with 2, 2-diphenyl-1-picrylhydrazyl (dpph
•
) in
alcohols.
The Journal of Organic Chemistry, 68
(9), 3433
–
3438
.
Lynch, S. R., & Cook, J. D. (1980). Interaction of vitamin C and iron.
Annals of the New
York Academy of Sciences, 355
(1), 32
–
44
.
Mahoney, J. R., & Graf, E. (1986). Role of alpha-tocopherol, ascorbic acid, citric acid and
EDTA as oxidants in model systems.
Journal of Food Science, 51
(5), 1293
–
1296
.
Maqsood, S., & Benjakul, S. (2010). Comparative studies of four di
ff
erent phenolic
compounds on in vitro antioxidative activity and the preventive e
ff
ect on lipid oxi-
dation of
fi
sh oil emulsion and
fi
sh mince.
Food Chemistry, 119
(1), 123
–
132
.
Merkl, R., Hradkova, I., Filip, V., & Smidrkal, J. (2010). Antimicrobial and antioxidant
properties of phenolic acids alkyl esters.
Czech Journal of Food Science, 28
(4),
275
–
279
.
Rice-Evans, C. A., Miller, N. J., & Paganga, G. (1996). Structure-antioxidant activity re-
lationships of
fl
avonoids and phenolic acids.
Free Radical Biology and Medicine, 20
(7),
933
–
956
.
Shantha, N. C., & Decker, E. A. (1994). Rapid, sensitive, iron-based spectrophotometric
methods for determination of peroxide values of food lipids.
Journal of AOAC
International
.
Singh, C., & Shah, D. (1993). Oxidation of monoglyceride, diglyceride, and triglyceride
monolayers by aqueous potassium permanganate solution.
Colloids and Surfaces A:
Physicochemical and Engineering Aspects, 70
(3), 207
–
212
.
Society, A. O. C., & Firestone, D. (1994).
O
ffi
cial Methods and Recommended Practices of the
American Oil Chemists' Society.
AOCS Press
.
Vaisali, C., Belur, P. D., & Regupathi, I. (2016). Comparison of antioxidant properties of
phenolic compounds and their e
ff
ectiveness in imparting oxidative stability to sar-
dine oil during storage.
LWT-Food Science and Technology, 69
, 153
–
160
.
Yen, G.-C., Duh, P.-D., & Tsai, H.-L. (2002). Antioxidant and pro-oxidant properties of
ascorbic acid and gallic acid.
Food Chemistry, 79
(3), 307
–
313
.
A. Mohanan et al.
Food Chemistry 266 (2018) 524–533
533
Do'stlaringiz bilan baham: |