Ориентированные и неориентированные графы план Введение Основные определения



Download 0,52 Mb.
bet3/7
Sana12.04.2022
Hajmi0,52 Mb.
#544903
1   2   3   4   5   6   7
Теорема об оптимальной раскраске
Если граф G является r-хроматическим, то он может быть раскрашен с использованием r (или меньшего числа) красок с помощью следующей процедуры: сначала в один цвет окрашивается некоторое максимальное независимое множество S(G), затем окрашивается в следующий цвет множество S (X\S(G)) и так далее до тех пор, пока не будут раскрашены все вершины.
Доказательство. Тот факт, что такая раскраска, использующая только r цветов, всегда существует, может быть установлен следующим образом. Пусть существует раскраска в rцветов, такая, что одно или больше множеств, окрашенных в один и тот же цвет, не являются максимальными независимыми множествами в смысле, упомянутом выше. Перенумеруем цвета произвольным способом. Очевидно, что мы можем всегда покрасить в цвет 1 те вершины (пусть это множество Vi′), которые не были окрашены в этот цвет и которые образуют максимальное независимое множество вместе с множеством Vi всех вершин графа, уже окрашенных в цвет 1. Эта новая раскраска возможна потому, что никакая вершина из множества Vi′ не является смежной ни с какой вершиной из Vi′ и, следовательно, всякая вершина, которая смежна хотя бы с одной вершиной из Vi′, окрашена в цвет, отличный от цвета 1, и поэтому не затрагивается процедурой перемены цвета вершин из Vi′. Рассматривая теперь подграф (X − Vi′) и проводя с ним аналогичные манипуляции, мы окрасим в цвет 2 какое-то (новое) максимальное независимое множество и т.д.
С помощью процедуры, описанной в этой теореме можно получить раскраску с минимальным количеством цветов для данного графа. Такая раскраска называется оптимальной независимой раскраской.
Приближенные алгоритмы раскрашивания
В этом простейшем из методов вершины вначале располагаются в порядке невозрастания их степеней.
Алгоритм
Первая вершина окрашивается в цвет 1. Затем список вершин просматривается сверху вниз (по невозрастанию степеней) и в цвет 1 окрашивается всякая вершина, которая не смежна с другой, уже окрашенной в этот цвет. Потом возвращаемся к первой в списке неокрашенной вершине, окрашиваем ее в цвет 2 и снова просматриваем список вершин сверху вниз, окрашивая в цвет 2 любую неокрашенную вершину, которая не соединена ребром с другой, уже окрашенной в цвет 2 вершиной. Аналогично действуем с цветами 3, 4 и т.д., пока не будут окрашены все вершины. Число использованных цветов будет тогда приближенным значением хроматического числа графа.
Приведенный выше алгоритм можно модифицировать. Для этого после каждого шага нужно упорядочивать неокрашенные вершины. Простая модификация описанной выше эвристической процедуры состоит в переупорядочивании неокрашенных вершин по невозрастанию их относительных степеней. Под относительными степенями понимаются степени соответствующих вершин в неокрашенном подграфе исходного графа.
В данной модификации предполагалось, что если две вершины имеют одинаковые степени, то порядок таких вершин случаен. Такие вершины можно также упорядочить, но уже по двухшаговым степеням. Двухшаговую степень определим как сумму относительных степеней инцидентных вершин. Аналогично можно поступать и далее.
Также можно изначально упорядочивать вершины по двухшаговым или трехшаговым степеням.

Download 0,52 Mb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6   7




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish