«Оптимал квадратур формулалар орқали Фурье интегралларини тақрибий ҳисоблаш алгоритми» дастурий тизими



Download 71,5 Kb.
bet4/4
Sana10.02.2022
Hajmi71,5 Kb.
#441507
1   2   3   4
Bog'liq
2b61fc7a96f4b420e0dfcb4b4c5ab34816bd

'),w2,real(F0_2'))
legend('FT', 'OQF (h=0.1)', 'OQF (h=0.01)', 'OQF (h=0.001)')
axis([a b - 5 5])
title('$F[f_0]$', 'Interpreter', 'latex');

subplot(3, 2, 4)


plot(w1, abs(real(F0_1
')-real(E0_1)))
title('$|\Re R_{f_{0,\omega}}[-1,1]| (h=0.1)$ ', 'Interpreter', 'latex');

subplot(3, 2, 5)


plot(w, abs(real(F0
')-real(E0)))
title('$|\Re R_{f_{0,\omega}}[-1,1]| (h=0.01)$ ', 'Interpreter', 'latex');

subplot(3, 2, 6)


plot(w2, abs(real(F0_2
')-real(E0_2)))
title('$|\Re R_{f_{0,\omega}}[-1,1]| (h=0.001)$ ', 'Interpreter', 'latex');

## OQF and FFT[fsin]
figure
subplot(3, 2, [1, 2])
plot(xx, fsin)
axis([-1.5 1.5 - 1.5 1.5])
title('$f_{\sin}$', 'Interpreter', 'latex');

subplot(3, 2, 3)


plot(w, real(E1), w1, real(F1_1), w, real(F1
'),w2,real(F1_2'))
legend('FT', 'OQF (h=0.1)', 'OQF (h=0.01)', 'OQF (h=0.001)')
axis([a b - 5 5])
title('$F[f_{\sin}]$', 'Interpreter', 'latex');

subplot(3, 2, 4)


plot(w1, abs(real(F1_1
')-real(E1_1)))
title('$|\Re R_{f_{{\sin},\omega}}[-1,1]| (h=0.1)$ ', 'Interpreter', 'latex');

subplot(3, 2, 5)


plot(w, abs(real(F1
')-real(E1)))
title('$|\Re R_{f_{{\sin},\omega}}[-1,1]| (h=0.01)$ ', 'Interpreter', 'latex');

subplot(3, 2, 6)


plot(w2, abs(real(F1_2
')-real(E1_2)))
title('$|\Re R_{f_{{\sin},\omega}}[-1,1]| (h=0.001)$ ', 'Interpreter', 'latex');

# OQF and FFT[fexp]
figure
subplot(3, 2, [1, 2])
plot(xx, fexp)
axis([-1.5 1.5 - 1.5 1.5])
title('$f_{\exp}$', 'Interpreter', 'latex');

subplot(3, 2, 3)


plot(w, real(E2), w1, real(F2_1), w, real(F2
'),w2,real(F2_2'))
legend('FT', 'OQF (h=0.1)', 'OQF (h=0.01)', 'OQF (h=0.001)')
axis([a b - 5 5])
title('$F[f_{\exp}]$', 'Interpreter', 'latex');

subplot(3, 2, 4)


plot(w1, abs(real(F2_1
')-real(E2_1)))
title('$|\Re R_{f_{{\exp},\omega}}[-1,1]| (h=0.1)$ ', 'Interpreter', 'latex');

subplot(3, 2, 5)


plot(w, abs(real(F2
')-real(E2)))
title('$|\Re R_{f_{{\exp},\omega}}[-1,1]| (h=0.01)$ ', 'Interpreter', 'latex');

subplot(3, 2, 6)


plot(w2, abs(real(F2_2
')-real(E2_2)))
title('$|\Re R_{f_{{\exp},\omega}}[-1,1]| (h=0.001)$ ', 'Interpreter', 'latex');

# OQF and FFT[flinear]
figure
subplot(3, 2, [1, 2])
plot(xx, flinear)
axis([-1.5 1.5 - 1.5 1.5])
title('$f_{linear}$', 'Interpreter', 'latex');

subplot(3, 2, 3)


plot(w, real(E11), w1, real(F11_1), w, real(F11
'),w2,real(F11_2'))
legend('FT', 'OQF (h=0.1)', 'OQF (h=0.01)', 'OQF (h=0.001)')
axis([a b - 5 5])
title('$F[f_linear]$', 'Interpreter', 'latex');

subplot(3, 2, 4)


plot(w1, abs(real(F11_1
')-real(E11_1)))
title('$|\Re R_{f_linear},\omega}}[-1,1]| (h=0.1)$ ', 'Interpreter', 'latex');

subplot(3, 2, 5)


plot(w, abs(real(F11
')-real(E11)))
title('$|\Re R_{f_{linear,\omega}}[-1,1]| (h=0.01)$ ', 'Interpreter', 'latex');

subplot(3, 2, 6)


plot(w2, abs(real(F11_2
')-real(E11_2)))
title('$|\Re R_{f_linear},\omega}}[-1,1]| (h=0.001)$ ', 'Interpreter', 'latex');

# OQF and FFT[fquad]
figure
subplot(3, 2, [1, 2])
plot(xx, fquad)
axis([-1.5 1.5 - 1.5 1.5])
title('$f_{\quad}$', 'Interpreter', 'latex');

subplot(3, 2, 3)


plot(w, real(E21), w1, real(F21_1), w, real(F21
'),w2,real(F21_2'))
legend('FT', 'OQF (h=0.1)', 'OQF (h=0.01)', 'OQF (h=0.001)')
axis([a b - 5 5])
title('$F[f_{\quad}]$', 'Interpreter', 'latex');

subplot(3, 2, 4)


plot(w1, abs(real(F21_1
')-real(E21_1)))
title('$|\Re R_{f_{{\quad},\omega}}[-1,1]| (h=0.1)$ ', 'Interpreter', 'latex');

subplot(3, 2, 5)


plot(w, abs(real(F21
')-real(E21)))
title('$|\Re R_{f_{{\exp},\omega}}[-1,1]| (h=0.01)$ ', 'Interpreter', 'latex');

subplot(3, 2, 6)


plot(w2, abs(real(F21_2
')-real(E21_2)))
title('$|\Re R_{f_{{\quad},\omega}}[-1,1]| (h=0.001)$ ', 'Interpreter', 'latex');


## exponensial function
import numpy as np
def expfunc(x,a,b):
if x>=a and x<=b:
return np.exp(-x-1)
else:
return 0

# the truncated function f(x) in [-1,1]

def func(x):
if abs(x)<=1:
return 1/(1+x^2)
else:
return 0

# the truncated function f(x) in [a,b]

def linearfunc(x,a,b):

if x>=a and x<=b:


return x
else:
return 0

# the truncated function f(x) in [a,b]

def quadfunc(x,a,b):

if x>=a and x<=b:


return x**2
else:
return 0

# the truncated function f(x) in [a,b]

def rectfunc(x,a,b):

if x>=a and x<=b:


return 1
else:
return 0
# the sinus function f(x) in [a,b]

def sinfunc(x,a,b):

if x>=a and x<=b:


y=np.sin((2*np.pi*(x-a))/(b-a))
else:
return 0
####
def Kw(w,h):
return (np.sin(np.pi*w.*h)./(np.pi*w.*h)).**4*(6/(2*np.cos(2*np.pi*w.*h)+4))

Matlab
% Computation of the sum of the optimal coefficients in the case m=1
%

clear
close all


%
% The interval [a1,b1] is the interval, where functions are given
%
a1=0;
b1=1;
%
% The interval [a,b] is the wider interval than [a1,b1] in which we extent
% the given function with zero value
%
a=0;
b=1;
%
% the set of nodes in the interval [a,b] with respect to variable x and step h=0.1
%
x=a:0.01:b;
%
% the set of nodes in the interval [a1,b1] with respect to variable x and
% step h=0.1
%
%
% defining the step h in the interval [a1,b1] with respect to x
%
%h1=(b1-a1)/N1;
%
% the set of nodes in the interval [a,b] with respect to variable w, with
% step tau=0.01
%
w=a:0.01:b;
M=length(w)-1;
%
% defining the step tau in the interval [a,b] with respect to w
%
h=(b-a)/M;
N=length(x)-1;
%
% f0(n) is the set of values of the rec[a1,b1] function
% f1(n) is the set of values of the sin[a1,b1] function
% f2(n) is the set of values of the exp[a1,b1] function
%

%%
% the function g0, g1 and g2 are Fourier transforms of the functions


% rect[-1,1], sin[-1,1] and exp[-1,1]
% C is coefficients matrix
%
% h=0.01
C=zeros(length(w),length(x));
E0=zeros(1,length(w));
E1=zeros(1,length(w));
E2=zeros(1,length(w));
E11=zeros(1,length(w));
E21=zeros(1,length(w));
f0=zeros(1,length(x));
f1=zeros(1,length(x));
f2=zeros(1,length(x));
f11=zeros(1,length(x));
f21=zeros(1,length(x));
for n=1:(N+1)
f0(n)=rectfunc(x(n),a1,b1);
f1(n)=sinfunc(x(n),a1,b1); %sin
f2(n)=expfunc(x(n),a1,b1); %exp
f11(n)=linearfunc(x(n),a1,b1); %linear
f21(n)=quadfunc(x(n),a1,b1); %quad
end

for m=1:(M+1)


E0(m)=g0(w(m),a1,b1);
E1(m)=gsin(w(m),a1,b1);
E2(m)=gexp(w(m),a1,b1);
E11(m)=g1(w(m),a1,b1);
E21(m)=g2(w(m),a1,b1);
C(m,1)=C0(w(m),h,a);
C(m,N+1)=CN(w(m),h,b);
for n=2:N
C(m,n)=Cb(n-1,w(m),h,a);
end
end
F0=C*f0';
F1=C*f1';
F2=C*f2';
F11=C*f11';
F21=C*f21';
%%
% F0, F1 and F2 are Fourier transforms of rect, linear and quadratic
% functions
%
%
%% h=0.1
w1=a:0.1:b;
M_1=length(w1)-1;
h_1=(b-a)/M_1;
x1=a:0.1:b;
N1=length(x1)-1;

C_1=zeros(length(w1),length(x1));


E0_1=zeros(1,length(w1));
E1_1=zeros(1,length(w1));
E2_1=zeros(1,length(w1));
E11_1=zeros(1,length(w1));
E21_1=zeros(1,length(w1));

f0_1=zeros(1,length(x1));


f1_1=zeros(1,length(x1));
f2_1=zeros(1,length(x1));
f11_1=zeros(1,length(x1));
f21_1=zeros(1,length(x1));
for n=1:(N1+1)
f0_1(n)=rectfunc(x1(n),a1,b1);
f1_1(n)=sinfunc(x1(n),a1,b1); %sin
f2_1(n)=expfunc(x1(n),a1,b1); %exp
f11_1(n)=linearfunc(x1(n),a1,b1); %linear
f21_1(n)=quadfunc(x1(n),a1,b1); %quad
end

for m=1:(M_1+1)


E0_1(m)=g0(w1(m),a1,b1);
E1_1(m)=gsin(w1(m),a1,b1);
E2_1(m)=gexp(w1(m),a1,b1);
E11_1(m)=g1(w1(m),a1,b1);
E21_1(m)=g2(w1(m),a1,b1);
C_1(m,1)=C0(w1(m),h_1,a);
C_1(m,M_1+1)=CN(w1(m),h_1,b);
for n=2:N1
C_1(m,n)=Cb(n-1,w1(m),h_1,a);
end
end
F0_1=C_1*f0_1';
F1_1=C_1*f1_1';
F2_1=C_1*f2_1';
F11_1=C_1*f11_1';
F21_1=C_1*f21_1';

%% h=0.001


w2=a:0.001:b;
M_2=length(w2)-1;
h_2=(b-a)/M_2;
x2=a:0.001:b;
N2=length(x2)-1;

C_2=zeros(length(w2),length(x2));


E0_2=zeros(1,length(w2));
E1_2=zeros(1,length(w2));
E2_2=zeros(1,length(w2));
E11_2=zeros(1,length(w2));
E21_2=zeros(1,length(w2));

f0_2=zeros(1,length(x2));


f1_2=zeros(1,length(x2));
f2_2=zeros(1,length(x2));
f11_2=zeros(1,length(x2));
f21_2=zeros(1,length(x2));

for n=1:(N2+1)


f0_2(n)=rectfunc(x2(n),a1,b1);
f1_2(n)=sinfunc(x2(n),a1,b1); %sin
f2_2(n)=expfunc(x2(n),a1,b1); %exp
f11_2(n)=linearfunc(x2(n),a1,b1); %linear
f21_2(n)=quadfunc(x2(n),a1,b1); %quad
end

for m=1:(M_2+1)


E0_2(m)=g0(w2(m),a1,b1);
E1_2(m)=gsin(w2(m),a1,b1);
E2_2(m)=gexp(w2(m),a1,b1);
E11_2(m)=g1(w2(m),a1,b1);
E21_2(m)=g2(w2(m),a1,b1);
C_2(m,1)=C0(w2(m),h_2,a);
C_2(m,M_2+1)=CN(w2(m),h_2,b);
for n=2:N2
C_2(m,n)=Cb(n-1,w2(m),h_2,a);
end
end
F0_2=C_2*f0_2';
F1_2=C_2*f1_2';
F2_2=C_2*f2_2';
F11_2=C_2*f11_2';
F21_2=C_2*f21_2';

%% []
xx=-2:0.001:2;


ff=zeros(1,length(xx));
fexp=zeros(1,length(xx));
fsin=zeros(1,length(xx));
flinear=zeros(1,length(xx));
fquad=zeros(1,length(xx));
for n=1:length(xx)
ff(n)=rectfunc(xx(n),a1,b1);
fsin(n)=sinfunc(xx(n),a1,b1);
fexp(n)=expfunc(xx(n),a1,b1);
flinear(n)=linearfunc(xx(n),a1,b1);
fquad(n)=quadfunc(xx(n),a1,b1);
end
%% OQF and FFT [f0]
figure %f11
subplot(3,2,[1,2])
plot(xx,ff)
axis([-1.5 1.5 -0.5 1.5])
title('$f_0$','Interpreter','latex');

subplot(3,2,3)


plot(w,real(E0),w1,real(F0_1),w,real(F0'),w2,real(F0_2'))
legend('FT','OQF (h=0.1)','OQF (h=0.01)','OQF (h=0.001)')
axis([a b -5 5])
title('$F[f_0]$','Interpreter','latex');
subplot(3,2,4)
plot(w1,abs(real(F0_1')-real(E0_1)))
title('$|\Re R_{f_{0,\omega}}[-1,1]| (h=0.1)$ ','Interpreter','latex');

subplot(3,2,5)


plot(w,abs(real(F0')-real(E0)))
title('$|\Re R_{f_{0,\omega}}[-1,1]| (h=0.01)$ ','Interpreter','latex');

subplot(3,2,6)


plot(w2,abs(real(F0_2')-real(E0_2)))
title('$|\Re R_{f_{0,\omega}}[-1,1]| (h=0.001)$ ','Interpreter','latex');

%% OQF and FFT [fsin]


figure
subplot(3,2,[1,2])
plot(xx,fsin)
axis([-1.5 1.5 -1.5 1.5])
title('$f_{\sin}$','Interpreter','latex');

subplot(3,2,3)


plot(w,real(E1),w1,real(F1_1),w,real(F1'),w2,real(F1_2'))
legend('FT','OQF (h=0.1)','OQF (h=0.01)','OQF (h=0.001)')
axis([a b -5 5])
title('$F[f_{\sin}]$','Interpreter','latex');
subplot(3,2,4)
plot(w1,abs(real(F1_1')-real(E1_1)))
title('$|\Re R_{f_{{\sin},\omega}}[-1,1]| (h=0.1)$ ','Interpreter','latex');

subplot(3,2,5)


plot(w,abs(real(F1')-real(E1)))
title('$|\Re R_{f_{{\sin},\omega}}[-1,1]| (h=0.01)$ ','Interpreter','latex');

subplot(3,2,6)


plot(w2,abs(real(F1_2')-real(E1_2)))
title('$|\Re R_{f_{{\sin},\omega}}[-1,1]| (h=0.001)$ ','Interpreter','latex');
%% OQF and FFT [fexp]
figure
subplot(3,2,[1,2])
plot(xx,fexp)
axis([-1.5 1.5 -1.5 1.5])
title('$f_{\exp}$','Interpreter','latex');

subplot(3,2,3)


plot(w,real(E2),w1,real(F2_1),w,real(F2'),w2,real(F2_2'))
legend('FT','OQF (h=0.1)','OQF (h=0.01)','OQF (h=0.001)')
axis([a b -5 5])
title('$F[f_{\exp}]$','Interpreter','latex');
subplot(3,2,4)
plot(w1,abs(real(F2_1')-real(E2_1)))
title('$|\Re R_{f_{{\exp},\omega}}[-1,1]| (h=0.1)$ ','Interpreter','latex');

subplot(3,2,5)


plot(w,abs(real(F2')-real(E2)))
title('$|\Re R_{f_{{\exp},\omega}}[-1,1]| (h=0.01)$ ','Interpreter','latex');

subplot(3,2,6)


plot(w2,abs(real(F2_2')-real(E2_2)))
title('$|\Re R_{f_{{\exp},\omega}}[-1,1]| (h=0.001)$ ','Interpreter','latex');

%% OQF and FFT [flinear]


figure
subplot(3,2,[1,2])
plot(xx,flinear)
axis([-1.5 1.5 -1.5 1.5])
title('$f_{linear}$','Interpreter','latex');

subplot(3,2,3)


plot(w,real(E11),w1,real(F11_1),w,real(F11'),w2,real(F11_2'))
legend('FT','OQF (h=0.1)','OQF (h=0.01)','OQF (h=0.001)')
axis([a b -5 5])
title('$F[f_linear]$','Interpreter','latex');
subplot(3,2,4)
plot(w1,abs(real(F11_1')-real(E11_1)))
title('$|\Re R_{f_linear},\omega}}[-1,1]| (h=0.1)$ ','Interpreter','latex');

subplot(3,2,5)


plot(w,abs(real(F11')-real(E11)))
title('$|\Re R_{f_{linear,\omega}}[-1,1]| (h=0.01)$ ','Interpreter','latex');

subplot(3,2,6)


plot(w2,abs(real(F11_2')-real(E11_2)))
title('$|\Re R_{f_linear},\omega}}[-1,1]| (h=0.001)$ ','Interpreter','latex');

%% OQF and FFT [fquad]


figure
subplot(3,2,[1,2])
plot(xx,fquad)
axis([-1.5 1.5 -1.5 1.5])
title('$f_{\quad}$','Interpreter','latex');

subplot(3,2,3)


plot(w,real(E21),w1,real(F21_1),w,real(F21'),w2,real(F21_2'))
legend('FT','OQF (h=0.1)','OQF (h=0.01)','OQF (h=0.001)')
axis([a b -5 5])
title('$F[f_{\quad}]$','Interpreter','latex');
subplot(3,2,4)
plot(w1,abs(real(F21_1')-real(E21_1)))
title('$|\Re R_{f_{{\quad},\omega}}[-1,1]| (h=0.1)$ ','Interpreter','latex');

subplot(3,2,5)


plot(w,abs(real(F21')-real(E21)))
title('$|\Re R_{f_{{\exp},\omega}}[-1,1]| (h=0.01)$ ','Interpreter','latex');

subplot(3,2,6)


plot(w2,abs(real(F21_2')-real(E21_2)))
title('$|\Re R_{f_{{\quad},\omega}}[-1,1]| (h=0.001)$ ','Interpreter','latex');
%
% C_0 is the first coefficient of the optimal quadrature formula
%
%
function y=C0(w,h,a)
if w==0
y=h/2;
else
y=(h/2)*Kw(w,h).*exp(2*pi*i*w.*a);
end
end

%
% C_0 is the first coefficient of the optimal quadrature formula


%
%
function y=Cb(beta,w,h,a)
if w==0
y=h;
else
y=h*Kw(w,h).*exp(2*pi*i*w.*(h*beta+a));
end
end

%
% C_N is the last coefficient of the optimal quadrature formula


%
%
function y=CN(w,h,b)
if w==0
y=h/2;
else
y=(h/2)*Kw(w,h).*exp(2*pi*i*w.*b);
end
end

function y=expfunc(x,a,b)


if x>=a && x<=b


y=exp(-x-1);
else
y=0;

end

%
%
% the truncated function f(x) in [-1,1]
%
function y=func(x)

if abs(x)<=1


y=1/(1+x^2);
else
y=0;
end

%
%
% the truncated function f(x) in [a,b]


%
function y=linearfunc(x,a,b)

if x>=a && x<=b


y=x;
else
y=0;
end
%
%
% the truncated function f(x) in [a,b]
%
function y=quadfunc(x,a,b)

if x>=a && x<=b


y=x^2;
else
y=0;
end

%
%
% the truncated function f(x) in [a,b]


%
function y=rectfunc(x,a,b)

if x>=a && x<=b


y=1;
else
y=0;
end
end

% the sinus function f(x) in [a,b]


%
function y=sinfunc(x,a,b)

if x>=a && x<=b


y=sin((2*pi*(x-a))/(b-a));
else
y=0;

end

%
% Fourier transform of f(x)=1 denoted by g0(w)
%
% g0(w,a,b)=\int_a^b 1 [exp(2\pi iwx)] dx
%

function y=g0(w,a,b)


if w==0
y=b-a;


else
y=-i*(exp(2*pi*i*w*b)-exp(2*pi*i*w*a))/(2*pi*w);
end
end

%
% Fourier transform of f(x)=x denoted by g1(w)


%
% g1(w,a,b)=\int_a^b [x exp(2\pi iwx)]dx
%

function y=g1(w,a,b)


if w==0
y=(b^2-a^2)/2;


else
y=(exp(2*pi*i*w*b)*b-exp(2*pi*i*w*a)*a)/(2*pi*i*w)-(exp(2*pi*i*w*b)-exp(2*pi*i*w*a))/((2*pi*i*w)^2);
end
%
% Fourier transform of f(x)=x^2 denoted by g2(w)
%
% g2(w,a,b)=\int_a^b [x^2 exp(2\pi iwx)]dx
%

function y=g2(w,a,b)


if w==0
y=(b^3-a^3)/3;


else
y=(exp(2*pi*i*w*b)*b^2-exp(2*pi*i*w*a)*a^2)/(2*pi*i*w)...
-2*(exp(2*pi*i*w*b)*b-exp(2*pi*i*w*a)*a)/((2*pi*i*w)^2)...
+2*(exp(2*pi*i*w*b)-exp(2*pi*i*w*a))/((2*pi*i*w)^3);
End

function y=gexp(w,a,b)


% y=(a-b)*(exp(-1+2*i*pi*b*w)-exp(2*i*pi*a*w))*(1-2*i*pi*a*w+2*i*pi*b*w)/...
% (4*pi^2*a^2*w^2-8*pi^2*a*b*w^2+4*pi^2*b^2*w^2+1);
%y=exp(2*pi*i*b*w-b)/(2*i*pi*w-1)-exp(2*pi*i*a*w-a)/(2*i*pi*w-1);
y=exp(2*pi*i*b*w-b-1)/(2*i*pi*w-1)-exp(2*pi*i*a*w-a-1)/(2*i*pi*w-1);

end
function y=gsin(w,a,b)


y=(a-b)*(exp(2*1i*pi*a*w)-exp(2*1i*pi*b*w))/(2*pi*(a^2*w^2-2*a*b*w^2+b^2*w^2-1));
%y=(exp(2*i*pi*a*w)*(cos(pi*a)-2*i*w*sin(pi*a))+exp(2*i*pi*b*w)*(-cos(pi*b)+2*i*w*sin(pi*b)))/(pi*(4*w^2-1));
% if a=-b then
% y=2*i*a*sin(2*pi*a*w)/(pi*(4*a^2*w^2-1))

end



function y=Kw(w,h)
y=(sin(pi*w.*h)./(pi*w.*h)).^4*(6/(2*cos(2*pi*w.*h)+4));
end
Download 71,5 Kb.

Do'stlaringiz bilan baham:
1   2   3   4




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish