Опыт Штерна — Герлаха продемонстрировал, что пространственная ориентация углового момента квантована. Таким образом, было показано, что система атомного масштаба обладает квантовыми свойствами. В первоначальном опыте атомы серебра пропускались через неоднородное магнитное поле, которое отклоняло их до того, как они попадали на экран детектора, например на предметное стекло. Частицы с ненулевым магнитным моментом отклоняются от прямого траектории из-за градиента магнитного поля. Экран показывает дискретные точки на экране, а не непрерывное распределение благодаря их квантованному спину. Исторически этот опыт сыграл решающую роль в убеждении физиков в реальности квантования углового момента во всех системах атомного масштаба.
После его концепции Отто Штерном в 1921 году опыт был впервые успешно проведён Вальтером Герлахом в начале 1922 года
Если поставить несколько установок Штерна — Герлаха последовательно (прямоугольники, содержащие S-G), то становится ясно, что они не действуют как простые селекторы, то есть отфильтровывают частицы с одним из состояний (существовавшим до измерения) и блокируют другие. Вместо этого они изменяют состояние, наблюдая за ним (как при поляризации света). На рисунке ниже x и z обозначают направления (неоднородного) магнитного поля, при этом плоскость xz ортогональна пучку частиц. В трёх показанных ниже системах S-G заштрихованные квадраты обозначают блокировку данного выхода, то есть каждая из установок S-G с блокиратором пропускает в следующую установку S-G последовательно только частицы с одним из двух состояний
Опыт 1
На верхнем рисунке видно, что когда на выходе из первого устройства находится второй идентичный аппарат S-G, на выходе второго устройства видно только z+ . Этот результат ожидается, поскольку ожидается, что все нейтроны в этой точке будут иметь спин z+, поскольку только пучок z+ из первого устройства вошёл во второй аппарат.
Опыт 2
Средняя система показывает, что происходит, когда другое устройство S-G размещается на выходе луча z+, полученного в результате прохождения первого аппарата, а второй прибор измеряет отклонение лучей по оси x вместо оси z. Второе устройство выдаёт x+ и x-оси. Теперь в классическом варианте мы ожидаем иметь один луч с характеристикой x, ориентированной на +, и характеристикой z, ориентированной на +, и другой луч с характеристикой x, ориентированной на -, и характеристикой z, ориентированной на +
Опыт 3
Нижняя система противоречит этому ожиданию. Выход третьего устройства, который измеряет отклонение по оси z, снова показывает выход z-, а также z+. Учитывая, что вход во второй аппарат S-G состоял только из z+, можно сделать вывод, что аппарат SG должен изменять состояния частиц, которые проходят через него. Этот опыт можно интерпретировать как демонстрацию принципа неопределенности
Do'stlaringiz bilan baham: |