On the theorem of frullani


Theorem 4 (Pfeffer). If f: [a, b] —» R



Download 52,19 Kb.
bet6/7
Sana26.03.2022
Hajmi52,19 Kb.
#510888
1   2   3   4   5   6   7
Bog'liq
S0002-9939-1990-1007485-4

Theorem 4 (Pfeffer). If f: [a, b] —» R is Denjoy-Perron integrable on [a, Z>] being
F(x) = (DP) Г f(t)dt,
J a
and g is a function of bounded variation on [a, b], then the product f g is Denjoy-Perron integrable and
(DP) [h f(t)g(t)dt = F(b)g(b) - F(a)g(a) - Л F(t) dg(t).
J a J a
We denote by (DP) f(t)dt the Denjoy-Perron integral of f on [a, b}.
We say that f: R -+ C is a locally Denjoy-Perron integrable function when, for every bounded interval [a, b] c R, f is Denjoy-Perron integrable on
[a, Z>]. If f: R —» C is locally Denjoy-Perron integrable, we define Tf\ 2 -+ C by
/+o° . .
f(t)
-oo
Note that Tf is a distribution because if sup(9>) c (a, b), by Theorem 4, we can write
/+ОО fb rb
f(t)
-oo Ja Ja
and, since F is continuous (see R. M. McLeod [18] p. 58), we have


< A/e J,sup|/(t)|.
rb
\Tf(
' J a
Now, if f is differentiable at every point, f1 is locally Denjoy-Perron inte­grable (see R. M. McLeod [18], p. 27). Moreover, = DTf, because if
e 2, we have by Theorem 4:
/+ОО r+oo
/(OH') dt = - f(t)4> (t) dt - (DTf,
-oo J —oo
Theorem 5. Let f: R —> C Denjoy-Perron integrable. Then f is a tempered distribution.
Proof. Put F(x) = (DP) f* f(t) dt for every x € R.
By Theorem 4, for every (p e S,
rb rb
(DP) f(t)
J a J a
Observe that, as F is bounded and continuous and q> e S, the Riemann- Stieltjes integral /2^ P(t)dq>(t) is defined, and
lim F(b)
lim F(a)
b—>+oo a—^ — oo
So f(t)
is Denjoy-Perron integrable on R and
/+ОО r + oo
f(t)
-oo J —oo
Now, since | F(t)
Msup,eR |^'(r)|, we see that the linear form

I-» (DP) f(t)
is a tempered distribution.
As we want to extend the proof of Theorem 2 to the Denjoy-Perron integral instead of the Lebesgue integral, we need S. Lojasiewicz’s definition [ 17] of the value of a distribution at a point. It is said that a distribution T has a value at a point a when there exists the limit
lim T(a + kx) л^о
in the space 2' of distributions. This limit, when it exists, is a constant distri­bution, and we say that this constant is the value of T at a (see S. Lojasiewicz [17] or P. Antosik, J. Mikusinski and R. Sikorski [3]).

Download 52,19 Kb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6   7




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish