To'plam elementlarining soni bilan bog'Iiq ayrim masalalar.To'plamlar nazariyasining muhim qoidalaridan biri — jamlash qoidasidir. Bu qoida kesishmaydigan to'p-lamlar birlashmasidagi elementlar sonini topish imkonini beradi.
1-teorema (jamlash qoidasi). Kesishmaydigan A va B chekli to'plamlarning (5- rasm) birlashmasidagi elementlar soni A va B to'plamlar elementlari sonlarining yig'indisiga teng:
Isbot. n(A) = k, n(B) = m bo'lib, A to'plam αp a2, ..., ak elementlardan, B to'plam esa b{, bv ..., bm ele-mentlardan tashkil topgan bo'lsin.Agar A va B to'plamlar kesishmasa, ularning birlash-masi a{, ar ..., ak, b{, bv ..., bm elementlardan tashkil topadi:
Bu to'plamda k + m ta element mavjud, ya'ni
Xuddi shu kabi, chekli sondagi A, B, ..., Fjuft-jufti bilan kesishmaydigan to'plamlar uchun quyidagi tenglik to'g'riligini isbotlash mumkin:
2-teorema. Ixtiyoriy A va B chekli to'plamlar uchun ushbu tenglik o'rinli:
I sbot. bo'lsa, ko'ra (1) tenglik o'rinli. Agarholda bilan kesishmaydigan to'plamlarning birlashmasi ko'rinishida tasvirlash mumkin (6- rasm):
(2)
g a teng.
Jamlash qoidasiga ko'ra,
(2) tenglikdan , ya'ni (1) tenglik hosil bo'ladi.
M a s a 1 a. 100 kishidan iborat sayyohlar guruhida 70 kishi ingliz tilini, 45 kishi fransuz tilini, 23 kishi esa ikkala tilni ham biladi. Sayyohlar guruhidagi necha kishi ingliz tilini ham, fransuz tilini ham bilmaydi?
Y e c h i s h. Berilgan guruhdagi ingliz tilini biladigan sayyohlar to'plamini A bilan, fransuz tilini biladigan sayyohlar to'plamini B bilan belgilaymiz. U holda ham ingliz tilini, ham fransuz tilini biladigan sayyohlar to'plami to'plamdan, shu ikki tildan hech bo'lmasa bittasini biladigan sayyohlar to'plami esa to'plamdan iborat bo'ladi.
Shartga ko'ra, (1) tenglikka
ko'ra,
Shunday qilib, 92 kishi ingliz va fransuz tillaridan hech bo'lmaganda bittasini biladi, 100-92 = 8 kishi esa ikkala tilni ham bilmaydi.
XULOSA
Xulosa qilib aytganda Maktablarda o’quvchilarga bilim berishda zamonaviy ta'lim texnologiyalarining ahamiyati to'g'risida so'z borganda O'zbekiston respublikasining birinchi prezidenti I.A.Karimovning ― O'quv jarayoniga yangi axborot va pedagogik texnologiyalarni keng joriy etish, bolalarimizni komil insonlar etib tarbiyalashda jonbozlik ko'rsatadigan o'qituvchi va domlalarga e'tiborimizni yanada oshirish, qisqacha aytganda, ta'lim-tarbiya tizimini sifat jihatidan butunlay yangi bosqichga ko'tarish diqqatimiz markazida bo'lishi darkor‖ degan so'zlarini tahkidlash o'rinlidir. Bu masala ― Barkamol avlod yili Davlat dasturida ham asosiy yo'nalishlardan biri sifatida e'tirof etilgan.
Hozirgi kunda jahon tajribasidan ko'rinib turibdiki, ta'lim jarayoniga o'qitishning yangi, zamonaviy usul va vositlari kirib kelmoqda va samarali foydalanilmoqda. Jumladan, Maktablarda innovasion va zamonaviy pedagogik g'oyalar amalga oshirilmoqda: o'qituvchi bilim olishning yagona manbai bo'lib qolishi kerak emas, balki talabalar mustaqil ishlash jarayonining tashkilotchisi, maslahatchisi, o'quv jarayonining menejeri bo'lishi lozim. Ta'lim texnologiyasini ishlab chiqish asosida aynan shu g'oyalar yotadi.
Diskret matematika va matematik mantiq amaliy masalalarni yechishning eng keng tarqalgan fanlaridan biri, masalan, hisoblash texnikasining mantiqiy asoslari va dasturiy ta’minotini rivojlantirishda. Usulning qo’llanilishi qulayligi, uning har qanday murakkab shaklli soha uchun ham qo’llanilishi soddaligi sababli bu usul amaliychi va ayniqsa muhandislar orasida keng qo’llanilib kelinmoqda.
Bu usul asosida ishlab chiqarish tizimining bir qator hisoblari muvaffaqiyatli qo’llanilib kelinmoqda. Bu esa Diskret matematika va matematik mantiqning amaliy ahamiyati naqadar yuqori ekanligini bildiradi. Diskret matematika va matematik mantiq avvalo muhandislar tomonidan taklif etildi, undan keyinroq esa u o’zining matematik asosiga ega bo’ldi. Fanning maqsadi matematika va informatika ta’lim yo’nalishi talabalriga «Diskret matematika va matematik mantiq» ning nazariy asoslarini, ularning amliyotdagi o’rni va o’ziga xos xususiyatlarini va afzalliklarini, amaliy masalalarni yechishga tadbiq qilishni, har xil ob’yektlarni tadqiq qilishni o’rgatish.
Fanning asosiy masalasi–matematik mantiq, bir tomondan, formal mantiq muammolariga matematik metodlarni qo‘llash bo‘lsa, ikkinchi tomondan, matematikani asoslashga xizmat qiluvchi fan sifatida foydalanishdir. Hozirgi zamon matematik mantiqi avtomatika, mashina matematikasi, bir tildan ikkinchi tilga avtomatik tarzda tarjima qilish, matematik lingvistika, axborot nazariyasi va umuman kibernetikaning nazariy va asosi hisoblanadi.
Do'stlaringiz bilan baham: |