Number Theory: Structures, Examples, and Problems


II Solutions, 3. Floor Function and Fractional Part



Download 1,87 Mb.
Pdf ko'rish
bet95/125
Sana08.02.2022
Hajmi1,87 Mb.
#434761
1   ...   91   92   93   94   95   96   97   98   ...   125
Bog'liq
Titu Andreescu, Dorin Andrica Number Theory Str

II Solutions, 3. Floor Function and Fractional Part
(2) (Landau) If p and q are odd, then
p

1
2
k
=
1
%
kq
p
&
+
q

1
2
k
=
1
%
kp
q
&
=
(
p

1
)(
q

1
)
4
.
Solution.
(1) Let
f
: [
0
,
m
] →
0
,
mq
p
,
f
(
x
)
=
q
p
x
. Because gcd
(
p
,
q
)
=
1
and
m
<
p
, we have
n
(
G
f
)
=
1, and the desired equality follows from Theorem
3.2.1.
(2) In the previous identity we take
m
=
p
2
. It follows that
s
=
q

1
2
, and the
conclusion follows.
3.3
A Useful Result
Problem 3.3.3.
Let p be an odd prime and let q be an integer that is not divisible
by p. Show that
p

1
k
=
1
%
(

1
)
k
k
2
q
p
&
=
(
p

1
)(
q

1
)
2
.
(2005 “Alexandru Myller” Romanian Regional Contest)
Solution.
For
f
:
Z

+

R
,
f
(
s
)
=
(

1
)
s
s
2
, conditions (i) and (ii) in Theo-
rem 3.3.1 are both satisfied. We obtain
p

1
k
=
1
%
(

1
)
k
k
2
q
p
&
=
q
p
(

1
2
+
2
2
− · · · +
(
p

1
)
2
)

p

1
2
=
q
p
·
p
(
p

1
)
2

p

1
2
;
hence
p

1
k
=
1
%
(

1
)
k
k
2
q
p
&
=
(
p

1
)(
q

1
)
2
.
Remarks.
(1) By taking
q
=
1 we get
p

1
k
=
1
%
(

1
)
k
k
2
p
&
=
0
.
Using now the identity

x
=
1

x
,
x

R
, the last display takes the form
p

1
k
=
1
(

1
)
k
%
k
2
p
&
=
1

p
2
.


3.3. A Useful Result
265
(2) Similarly, applying Theorem 3.3.1 to
f
:
Z

+

R
,
f
(
s
)
=
(

1
)
s
s
4
yields
p

1
k
=
1
%
(

1
)
k
k
4
q
p
&
=
q
(
p

1
)(
p
2

p

1
)
2

p

1
2
.
Taking
q
=
1 gives
p

1
k
=
1
%
(

1
)
k
k
4
p
&
=
(
p

2
)(
p

1
)(
p
+
1
)
2
.
Problem 3.3.4.
Let p be an odd prime. Show that
p

1
k
=
1
k
p

k
p

p
+
1
2
(
mod
p
).
(2006 “Alexandru Myller” Romanian Regional Contest)
Solution.
For
f
(
s
)
=
s
p
p
, conditions (i) and (ii) in Theorem 3.3.1 are also satis-
fied, and for
q
=
1 we have
p

1
k
=
1
%
k
p
p
2
&
=
1
p
p

1
k
=
1
k
p
p

p

1
2
=
1
p
p

1
k
=
1
k
p
p

1
p
2
p

1
k
=
1
k
+
1
p
2
p
(
p

1
)
2

p

1
2
=
1
p
p

1
k
=
1
k
p

k
p

1
p
·
(
p

1
)
2
2
.
It follows that
p

1
k
=
1
k
p

k
p

(
p

1
)
2
2
=
p
p
k
=
1
%
k
p
p
2
&
,
i.e.,
p

1
k
=
1
k
p

k
p

(
p

1
)
2
2
(
mod
p
).
The conclusion follows since
(
p

1
)
2
2

p
2
+
1
2

p
+
1
2
(
mod
p
).


266
II Solutions, 3. Floor Function and Fractional Part
Remarks.
(1) For each
k
=
1
,
2
, . . . ,
p

1 denote by
r
k
the remainder when
k
p
is divided by
p
2
. We have
k
p
=
%
k
p
p
2
&
p
2
+
r
k
,
k
=
1
,
2
, . . . ,
p

1
,
hence
p

1
k
=
1
k
p
=
p
2
p

1
k
=
1
%
k
p
p
2
&
+
p

1
k
=
1
r
k
= −
p
2
(
p

1
)
2
+
p

1
k
=
1
r
k
+
p

1
k
=
1
k
p
.
It follows that
r
1
+
r
2
+ · · · +
r
p

1
=
p
2
(
p

1
)
2
.
(2) The formula in our problem shows that the sum of the quotients ob-
tained when
k
p

k
is divided by
p
(Fermat’s little theorem) is congruent to
p
+
1
2
modulo
p
.


4
Digits of Numbers
4.1
The Last Digits of a Number
Problem 4.1.4.
In how may zeros can the number
1
n
+
2
n
+
3
n
+
4
n
end for
n

N
?
(1998 St. Petersburg City Mathematical Olympiad)
Solution.
There can be no zeros (e.g.,
n
=
4), one zero
(
n
=
1
)
, or two zeros
(
n
=
2
)
. In fact, for
n

3, 2
n
and 4
n
are divisible by 8, while 1
n
+
3
n
is
congruent to 2 or 4 mod 8. Thus the sum cannot end in three or more zeros.
Problem 4.1.5.
Find the last five digits of the number
5
1981
.
Solution.
First, we prove that 5
1981
=
5
5
(
mod 10
5
)
. We have
5
1981

5
5
=
(
5
1976

1
)
5
5
=
5
5
[
(
5
8
)
247

1
]
=
M
[
5
5
(
5
8

1
)
] =
M
[
5
5
(
5
4

1
)(
5
4
+
1
)
]
=
M
[
5
5
(
5

1
)(
5
+
1
)(
5
2
+
1
)(
5
4
+
1
)
]
=
M
5
2
2
5
=
M
100
,
000
.
Therefore 5
1981
=
M
100
,
000
+
5
5
=
M
100
,
000
+
3125, so 03125 are the
last five digits of the number 5
1981
. Of course, the relation
a
=
M
b
means that
a
is a multiple of
b
.
Problem 4.1.6.
Consider all pairs
(
a
,
b
)
of natural numbers such that the product
a
a
b
b
, written in base
10
, ends with exactly
98
zeros. Find the pair
(
a
,
b
)
for which
the product ab is smallest.
(1998 Austrian–Polish Mathematics Competition)
Solution.
Let
a
2
be the maximum integer such that 2
a
2
|
a
. Define
a
5
,
b
2
, and
b
5
similarly. Our task translates into the following: find
a
,
b
such that
© Birkhäuser Boston, a part of Springer Science + Business Media, LLC 2009
T. Andreescu and D. Andrica, 
Number Theory
,
 
DOI: 10.1007/b11856_15, 
267


268
II Solutions, 4. Digits of Numbers
min
{
a
5
a
+
b
5
b
,
a
2
a
+
b
2
b
} =
98 and
ab
is minimal. Since 5
|
a
5
a
+
b
5
b
, we
have
a
5
a
+
b
5
b
>
98 and min
{
a
5
a
+
b
5
b
,
a
2
a
+
b
2
b
} =
a
2
a
+
b
2
b
=
98.
Note that if 5
|
gcd
(
a
,
b
)
, then
a
2
a
+
b
2
b
=
98, contradiction. Without loss
of generality, suppose that
a
5

1 and
b
5
=
0. Let
a
=
2
a
2
5
a
5
x
and 2
b
2
y
,
gcd
(
2
,
x
)
=
gcd
(
5
,
x
)
=
gcd
(
2
,
y
)
=
1. Then
a
5
a
=
a
5
(
2
a
2
5
a
5
x
) >
98 and
a
2
a
=
a
2
(
2
a
2
5
a
5
x
)

98. So
a
5
>
a
2
. We consider the following cases.
(a)
a
2
=
0. Then
b
2
(
2
b
2
y
)
=
98. So
b
2
=
1,
y
=
49,
b
=
98. Since
a
5
(
5
a
5
x
)

98 and
x
is odd,
a
=
5
a
5
x

125 for
a
5

3;
x

3 and
a

75 for
a
5
=
2;
x

21 and
a

105 for
a
5
=
1. Hence for
a
2
=
0,
b
=
98,
a

75.
(b)
a
2

1. Then
a
5

2. We have 2
a
2
5
a
5
x

98 and 5
a
5
x

49. Thus
a
5
=
2,
x
=
1,
a
2
=
1,
a
=
50. Then
b
2
b
=
48. Let
b
=
2
b
2
y
. Then
b
2
(
2
b
2
y
)
=
48,
which is impossible.
From the above, we have
(
a
,
b
)
=
(
75
,
98
)
or
(
98
,
75
)
.

Download 1,87 Mb.

Do'stlaringiz bilan baham:
1   ...   91   92   93   94   95   96   97   98   ...   125




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish