z
o 'q i deb
(2.36)
U
(2.37)
и
b e l g i l a y l i k . B u h o i d a b u r a l i s h b u r c h a g i 5(p = { 0 , 0 , 5
} k o ' r i n i s h g a e g a
b o ' l a d i . S h u n g a k o ' r a ( 2 . 3 5 ) d a g i s k a l a r k o ' p a y t m a
5(P i ~ ^ h P a l = 0
( 2 . 3 8 )
a
k o ' r i n i s h n i o l a d i . B u d e g a n i e s a , b u h o i d a s a q l a n u v c h a n k a t t a l i k M
e k a n l i g i n i b i l d i r a d i . M a r k a z i y m a y d o n d a z o ' q i s i f a t i d a i x t i y o r i y o ' q n i
o l i s h m u m k i n .
2 . 4 . 1 - m i s o l . { M x , M y , M z } larni silindrik k o o rd in a t la r orqali if o d a la n g .
D e k a r t ( x , y , z )
va s i lin d r ik ( r , ( p , z ) k o o r d in a t la r q u y i d a g i c h a b o g '
langan:
x = rc o s ( p ,
y
= rs \rup,
z = z.
( 2 . 3 9 )
А / ni topaylik:
M ,
=
y p . - z p x
=
m ( y z - z y )
= m (/"sin
(pz - z r
s in
< p - z r c o s <рф)
=
.
, .
...
( 2 . 4 0 )
= hi sin
cp(rz - z r )- mzr
cos
qxp.
H u d d i sh u y o ' s m d a b o s h q a k o m p o n e n t a l a r h a m top iladi:
M v
=
z P i - x p ,
=
m ( z x - x i )
=
m c o s < p ( z r - r z ) -
m z r s in
M_ = x p y - y p t = m(xy - yx) =
(2 - 4 1 )
= m \ r c o s (p ( r s in (p + г ф c o s i p ) — / sin cp(r c o s
rsin
т г 2ф. ( 2 .4 2 )
Bu m i s o l d a n bir fo y d a l i m u n o s a b a t keltirib c h iq a r ish i m u m k i n . Agar
m o d d i y n u q t a n i n g silindrik s i s te m a d a g i Lagranj fu n k s iy a sin i
£ = y [
x
2 + j 2 + i 2 ) - u (-v> J .
= ~ ( r 2 + г 2ф 2 + r ) - U ( r ,
ф
, z ) ( 2 . 4 3 )
y u q o r id a t o p i lg a n Л/ bilan taq q os lan sa
dL
M . - — = m r ( p
( 2 .4 4 )
e k a n l i g i t o p i l a d i . D e m a k , u m u m l a s h g a n (p k o o r d i n a t a g a m o s k e l u v c h i
u m u m l a s h g a n im p u ls M. ga ten g b o i a r ekan: p 9 — M _ .
2 . 4 . 2 - m i s o l .
{ Л / , M , M ) larni sferik ko o rd in a tla r orqali ifod ala n g.
D e k a r t (x , y , z) va sferik ( г , ( р , в )
ko o rd in a tla r q u y id a g i c h a bog'la n g a n :
46
х = /'c o s ф sin в,
v = r sinф sin 0,
: = r c o s 0 .
( 2 . 4 5 )
B iz g a x , у
va Z lar kerak bo'lad i. U la r q u y id a g ic h a h is obla nadi:
x
= г cos
sin 0 - гф sin
sin 0 + rQ cos
cos 0;
у = r sin ф sin 0 + гф cos
( 2 . 4 6 )
z = r
cos
в - гв sin в.
N a v b a t m a navbat har bir k o m p o n e n t a topiladi:
M x = yp t - z p v = m{yz - zy) = - m r 1 ( 0 sin
<0
+ 0 s in 0 c o s 0 cos ^>);
(2 .4 7 )
M x - z p x - x p . = m (z.x- xz) = m r 2 ( 0 coscp- ф sin 0 c o s 0 sin
(2 .4 8 )
M . - x p t - y p t = m(xy - yx) = mr' sin" вф.
( 2 .4 9 )
M o d d i y n u q ta Lagranj fu n k siyasin in g sferik s i ste m a d a g i if o d a sin i
L = — (.v2 + y 2 + z2 ) - l / ( . v . г .г) = ~ ( ' 2 + Г2ф2 sin2 0 + r 26 2 'j-U (r,< p ,e )
( 2 . 5 0 )
( 2 .4 9 ) b ila n taqqosla nilsa, y a n a
dL
( 2 . 5 1 )
e kanligi top ilad i. B u koordin atla rda h a m
koord in ataga m o s k e lu v c h i u m u m
las h gan im p u ls m o m e n t n i n g z ~ k o m p o n e n t a s i g a t e n g b o 'l ib chiqdi:
P<
p
= M z-
2 .5 . Virial teorem a
F in it h a ra k a t qilayotgan m o d d iy n u q ta l a r d a n iborat siste m an i olib
qaraylik. B u n d a y sistemadagi h e c h bir jism vaqt o'tishi bilan chesizlikka
ketib qolm aydi.
Agar siste m aning potensial energiyasi o 'z o 'z g aru v ch ilarin in g
k -
tartibli bir jinsli funksiya b o 'lsa, y a ’ni
U (ar, ,a r2,...,arH) = a kU (r, .r2,...,r)I),
(2 .5 2 )
k in etik , p o te n s ia l va to 'liq e n e rg iy a la rn in g v a q t b o 'y i c h a o 'r t a c h a
qiym atlari ora sid a sodda m u n o s a b a t o 'r n a tis h m u m k in . B uning u c h u n
d ek a rt k o o rd in a t sistem asida
a
z a rra c h a u c h u n h a ra k a t ten g lam asin i
vozib olavlik:
47
и и
и
а
- \
( j ;
0> Download Do'stlaringiz bilan baham: |