National open university of nigeria introduction to econometrics I eco 355



Download 1,58 Mb.
Pdf ko'rish
bet58/103
Sana28.02.2022
Hajmi1,58 Mb.
#475577
1   ...   54   55   56   57   58   59   60   61   ...   103
Bog'liq
ECO 355 0

 
Where 
(√ )

-
 
which is the density function of a normally distributed variable with the given mean and 
variance. 
(Note: exp means e to the power of the expression indicated by [].) Substituting (2) for 
each 
into (1) gives 

(√ )


-
If 
are known or given, but fib 
are not known, the function in 
(3) is called a likelihood function, denoted by LF
, and written as
1

(√ )


-
 
The method of maximum likelihood, as the name indicates, consists in estimating the 
unknown parameters in such a manner that the probability of observing the given Y‘s is 
as high (or maximum) as possible. Therefore, we have to find the maximum of the 
function (4). This is a straightforward exercise in differential calculus. For differentiation 
it is easier to express (4) in the log term as follows.

(Note: 
= natural log.). 


83 


Differentiating (5) partially with respect to 
, we obtain 


 
4

 
Setting these equations equal to zero (the first-order condition for optimization) and 
letting 
̅
̅
̅
denote the ML estimators, we obtain
3

̅

̅
̅
 
̅

̅
̅
 
̅
̅
4
∑( 
̅
̅
)
 
After simplifying, Esq. (9) and (10) yield 

̅
̅



84 

̅

̅

 
Which are precisely the normal equations of the least-squares theory obtained in (3.1.4) 
and (3.1.5). Therefore, the ML estimators, the 
̅
, given in (3.1.6) and (3.1.7). This 
equality is not accidental. Examining the likelihood (5), we see that the last term enters 
with a negative sign. Therefore, maximizing (5) amounts to minimizing this term, which 
is precisely the least-squares approach, as can be seen from (3.1.2).
Substituting the ML, (= OLS) estimators into (11) and simplifying, we obtain the ML 
estimator of 
̅
as 
̅
∑( 
̅
̅
)
∑( 
̂
̂
)
∑ ̂
 
From (14) it is obvious that the ML estimators 
̅
differs from the OLS estimator 
̅
[ ] ∑ ̂
, which was shown to be an unbiased estimator of 
in 
Appendix 3A, Section 3A.5. Thus, the ML estimator of 
is biased. The 
magnitude of this bias can be easily determined as follows. Taking the 
mathematical expectation of (14) on both sides, we obtain. 
̅
(∑ ̂
)
(∑
)
g

Download 1,58 Mb.

Do'stlaringiz bilan baham:
1   ...   54   55   56   57   58   59   60   61   ...   103




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish