N im a uchun m atem atik an I o ‘rg an ish kerak?



Download 46,17 Kb.
bet1/2
Sana01.07.2022
Hajmi46,17 Kb.
#726053
  1   2
Bog'liq
Induksiya. Deduksiya. Analatika


MO’M (matematika o'qitish metodikasi) umumiy matematika metodikasiga bog'liq. Umumiy matematika metodikasi tomonidan belgilangan qonuniyatlar kichik yoshdagi o'quvchilaming yosh xususiyatlarini hisobga olgan holda ishlab chiqiladi.

  • Bir tomondan, matematika metodikasi pedagogikaning umumiy nazariyasiga tayanadi va shu asosda shakllanadi. Bu hoi matematika o'qitish masalalarini hal etishda metodik va nazariy yaqinlashishning bir butunligini ta’minlaydi.

  • Ikkinchi tomondan, pedagogika umumiy qonuniyatlarini shakllantirishda xususiy metodikalar tomonidan erishilgan ma’lumotlarga tayanadi, bu uning hayotiyligi va aniqligini ta’minlaydi.

M a tem atik a m etodikasi ta ’lim ja ra y o n i bilan bogliq boM gan q u y id a g i u ch sa v o lg a ja v o b beradi:



  1. N im a uchun m atem atik an i o ‘rg an ish kerak?

  2. M atem atik ad an nim alam i o ‘rganish kerak?

  3. M atem atik an i qanday o ‘rg an ish kerak?



IN D U K S IY A
Bu uch metod yangi bilimlarni egallashning asosida yotuvchi xulosalarning xususiyatlariga qarab bir-biridan farq qilinadi.
Induksiya metodi bilishning shunday yo‘liki, bunda o‘quvchining fikri birlikdan umumiylikka, xususiy xulosalardan umumiy xulosaga o‘sib boradi. Induktiv xulosa – xususiydan umumiyga qarab boradigan xulosadir. Bu metoddan foydalanib biror qonuniyatni ochish yoki qoidani chiqarish uchun o‘qituvchi misollar, masalalar, ko‘rsatmali materiallarni puxtalik bilan tanlaydi.

Chala induksiya metodi orqali chiqarilgan xulosa kopgina hollarda to'gri, ammo ayrim hollarda noto'gri bo'ladi.




DEDUKSIYA METODI

Boshlang‘ich sinflarda induksiya metodi bilan uzviy bog‘liq holda deduksiya metodidan ham keng foydalaniladi. Boshlang‘ich sinflarning yangi o‘qitish dasturi talablariga o‘tishi munosabati bilan deduksiya metodidan foydalanish chegaralari ancha kengaydi. Odatdagi metodika deyarli induktiv metoddan foydalanishni, deduktiv metoddan foydalanishning cheklanganligini uqtirib turardi.


Deduksiya metodi bilishning shunday yo‘liki, bu yo‘l umumiyroq bilimlar asosida yangi xususiy bilimlarni olishdan iboratdir.
1+2=3
3 - 2=1
3 - 1=2
Deduksiya bu, umumiy qoidalardan xususiy misollarga va konkret qoidalarga o‘tishdir. Induktiv va deduktiv xulosalarga misollar keltiramiz. Birinchi sinf o‘quvchilariga yig‘indi bilan qo‘shiluvchi orasidagi bog‘lanishni tushuntirish uchun bolalarni xulosaga induktiv yo‘l bilan olib kelamiz. ko‘rsatmalilikdan (har xil doirachalardan) foydalanib, oldin hamma doirachalar qanchaligi topiladi (1 +2 =3)
Shundan keyin 1 ta qizil doiracha (birinchi qo‘shiluvchini ifodalovchi) surib qo‘yiladi, bunda bolalar 2 ta ko‘k doiracha ya’ni ikkinchi qo‘shiluvchi qolishiga ishonch hosil qilishadi. (3 – 2 = 1) Shundan keyin 3 ta doirachadan 2 ta ko‘k doiracha (ikkinchi qo‘shiluvchini ifodalovchi) ayirilsa, 1 ta qizil doiracha, ya’ni birinchi qo‘shiluvchi qolishiga ishonch hosil qiladilar (3 –1 =2). Shundan keyin boshqa sonlar hamda boshqa ko‘rsatmali materiallar bilan bir qatorda shunday mashqlar bajariladi va bolalarning o‘zlari ushbu umumiy xulosani ifodalashadi: agar birinchi qo‘shiluvchi, ayirilsa, ikkinchi qo‘shiluvchi qoladi, agar yig‘indidan ikkinchi qushiluvchi ayirilsa, birinchi qo‘shiluvchi qoladi. Shundan keyin 1 ta qizil doiracha (birinchi qo‘shiluvchini ifodalovchi) surib qo‘yiladi, bunda bolalar 2 ta ko‘k doiracha ya’ni ikkinchi qo‘shiluvchi qolishiga ishonch hosil qilishadi. (3 – 2 = 1) Shundan keyin 3 ta doirachadan 2 ta ko‘k doiracha (ikkinchi qo‘shiluvchini ifodalovchi) ayirilsa, 1 ta qizil doiracha, ya’ni birinchi qo‘shiluvchi qolishiga ishonch hosil qiladilar (3 –1 =2). Shundan keyin boshqa sonlar hamda boshqa ko‘rsatmali materiallar bilan bir qatorda shunday mashqlar bajariladi va bolalarning o‘zlari ushbu umumiy xulosani ifodalashadi: agar birinchi qo‘shiluvchi, ayirilsa, ikkinchi qo‘shiluvchi qoladi, agar yig‘indidan ikkinchi qushiluvchi ayirilsa, birinchi qo‘shiluvchi qoladi.
Bolalar tomonidan induktiv yo‘l bilan chig‘arilgan xulosa 5,6,7,8,9 sonlarini ayirish qaralayotganda deduktiv mulohazalar yuritish uchun foydalaniladi.



Download 46,17 Kb.

Do'stlaringiz bilan baham:
  1   2




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2025
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish