1-masala.
Ikki o’lchamli kvadrat matritsa berilgan. Uning har bir satridagi eng kata elementlarini aniqlash dasturini tuzing.
Kirish ma'lumotlari
n natural son berilgan. A[n][n] massiv berilgan.
Chiquvchi ma’lumotlar
Har bir satrdan eng kata elementlarni chiqaring
#include
#include
using namespace std;
void matrix_print(int a[10][10], int n)
{
for (int i = 0; i < n; i++)
{
for (int j = 0; j < n; j++)
{
cout << a[i][j] << "\t";
}
cout << "\n";
}
}
int satr_max(int a[], int n)
{
int max = a[0];
for (int i = 1; i < n; i++)
if (max < a[i]) max = a[i];
return max;
}
int main()
{
int n, a[10][10];
cout << "Satrlar sonini kiriting \nn="; cin >> n;
cout <<"Massiv elementlarini kiriting \n";
for (int i = 0; i < n; i++)
for (int j = 0; j < n; j++)
cin >> a[i][j];
cout << "Kiritilgan matritsa\n";
matrix_print(a, n);
for (int i = 0; i < n; i++)
{
cout << i << "-satrning eng kattasi=" <<
satr_max(&a[i][0], n);
cout << endl;
}
return 0;
system ("pause");
}
2-masala.
Quyidagi funksiyani to’rtburchaklar, Trapetsiya va Simpson formulalari yordamida taqribiy hisoblash dasturini tuzing
#include
#include
using namespace std;
double funk(double x)
{
return (sin(x)/(1+x*x));
}
int main()
{
double a,b,S=0, xa;
int n=10;
cout<<"integral chegarasini kiriting"<
cin>>a>>b;
xa=a+0.1;
while (xa
{
S+=funk(xa);
xa+=0.1;
}
S*=fabs(b-a)/n;
cout << S;
return 0; }
Ketma-ketlikning yig’indisini toping ; Sikl takrorlanishi . Algoritm samaradorligini baholang.
#include
using namespace std;
int main(){
double s=0,n;
for(double i=1;i<=300;i++)
{
if((1/i)-(1/(i+1))>0.0001)
s+=1/i;
}
cout<
}
2 ta kvadrat matritsa berilgan. Ularning yig’indisini toppish algoritmini toping va uni samaradorligini baholang.
#include
using namespace std
int main()
{
int m, n, c, d, first[100][100], second[100][100], sum[100][100];
cout << "Matritsa satr va ustunlar sonini kiriting:\n";
cin >> n;
cout << "Birinchi matritsa elementlarini kiriting\n";
for (c = 0; c < n; c++)
for (d = 0; d < n; d++)
cin >> first[c][d];
cout << "Ikkinchi matritsa elementlarini kiriting\n";
for (c = 0; c < n; c++)
for (d = 0; d < n; d++)
cin >> second[c][d];
for (c = 0; c < n; c++)
for (d = 0; d < n; d++)
sum[c][d] = first[c][d] + second[c][d];
cout << "Matritsalar yig'indisi:\n";
for (c = 0; c < n; c++)
{
for (d = 0; d < n; d++)
cout << sum[c][d] << "\t";
cout << endl;
}
return 0;
}
3. n o’lchamli kvadrat matritsa berilgan. Uning teskari matritsasini toppish algoritmini toping va uni samaradorligini baholang.
#include
using namespace std;
int main(){
int mat[3][3], i, j;
float determinant = 0;
cout<<"Matritsa elementlarini kiriting:\n";
for(i = 0; i < 3; i++)
for(j = 0; j < 3; j++)
cin>>mat[i][j];
printf("\nMatritsa Joylashuvi:");
for(i = 0; i < 3; i++){
cout<<"\n";
for(j = 0; j < 3; j++)
cout<}
for(i = 0; i < 3; i++)
determinant = determinant + (mat[0][i] * (mat[1][(i+1)%3] * mat[2][(i+2)%3] - mat[1][(i+2)%3] * mat[2][(i+1)%3]));
cout<<"\n\nteskari matritsa: \n";
for(i = 0; i < 3; i++){
for(j = 0; j < 3; j++)
cout<<((mat[(j+1)%3][(i+1)%3] * mat[(j+2)%3][(i+2)%3]) - (mat[(j+1)%3][(i+2)%3] * mat[(j+2)%3][(i+1)%3]))/ determinant<<"\t";
cout<<"\n";
}
return 0;
}
Do'stlaringiz bilan baham: |