Mustaqil ish Mavzu: Beyes formulalari. Bernulli formulasi. Muavr-Laplasning lokal va integral formulalari. Puasson formulasi. Guruh


Diskret tasodifiy miqdorlar sistemasi tashkil



Download 0,67 Mb.
bet4/11
Sana01.05.2022
Hajmi0,67 Mb.
#600970
1   2   3   4   5   6   7   8   9   10   11
Bog'liq
shahzodToyirov mt-1

Diskret tasodifiy miqdorlar sistemasi tashkil etuvchilarning shartli taqsimot qonunlari. - 2 о‘lchovli diskret tasodifiy miqdorni kо‘rib chiqamiz. Tashkil etuvchilarning mumkin bо‘lgan qiymatlari ; bо‘lsin. U holda tashkil etuvchilarning sharti ostidagi shartli taqsimoti quyidagicha aniqlanadi:
.
- shartli ehtimollik formulasi yordamida hisoblanadi.
tashkil etuvchilarning sharti ostidagi shartli taqsimoti ham shu kabi aniqlanadi:

Uzluksiz tasodifiy miqdorlar sistemasi tashkil etuvchilarining shartli taqsimot qonunlari. - ikki о‘lchovli uzluksiz tasodifiy miqdorning zichlik funksiyasi bо‘lsin. tashkil etuvchining qiymatidagi shartli zichligi deb sistemaning birgalikdagi zichlik funksiyasining tashkil etuvchining zichlik funksiyasiga nisbatiga aytiladi:
.
tashkil etuvchining shartli zichligi ham xuddi shunday hisoblanadi:

Quyidagi xossalarga о‘rinli::


1. BERNULLI SXEMASI

Bog‘liqsiz tajribalar. Bernulli taqsimoti Faraz qilaylik muayyan shatrlarda ta bog‘liqsiz tajribalar о‘tkazilayapti. Bu tajribalarning har birida ikki xil natija kutiladi: ehtimollik bilan «muvaffaqiyat» va ehtimollik bilan «muvaffaqiyatsizlik». Bunday tajribalar seriyasi Bernulli sxemasi deb ataladi. (Tajribalar seriyasida ishlatilayotgan «muvaffaqiyat» va «muvaffaqiyatsizlik» terminlari an’anaviy atamalar bо‘lib, biz uchun ularning nomlaridan kо‘ra tajriba natijalari muhim.)
Bernulli sxemasida muvaffaqiyatlar sonini deb belgilasak, bu kattalik diskret ehtimollik fazosida berilgan tasodifiy miqdor bо‘ladi. Darhaqiqat, agar tajriba muvaffaqiyat bilan tugasa, , aks holda deymiz va vektorni qaraymiz. Bu vektorni chekli ehtimollik fazosining nuqtasi sifatida qaraymiz: . Bu nuqtaning berilishi barcha ta tajribaning natijalarini aniqlaydi va aksincha. Shunday qilib, miqdor tasodifiy tajriba natijasining funksiyasidir va
.
Endi ehtimollik fazosida ehtimollikni aniqlaymiz. Barcha ta tajriba о‘zaro bog‘liqsiz va muvaffaqiyat ehtimolligi har bir tajribada bir xil ekanligidan
, (1.1)
bu yerda son tajribada natijaning ehtimolligidir; .
Shartga kо‘ra
.
Demak, (1.1) formulaning о‘ng tomonida ga teng kо‘paytuvchilarning soni larning orasidagi birlar lar sonicha, ga teng kо‘paytuvchilarning soni esa larning orasidagi nollar lar sonicha. YA’ni
. (1.2)
Yuqoridagi mulohazalar asosida tasodifiy miqdorning taqsimot qonunini aniqlaymiz:
(1.3)
(1.2) formulaga kо‘ra (1.3) tenglikning о‘ng tomonidagi har bir qо‘shiluvchi uchun

tenglikka ega bо‘lamiz. Bu qо‘shiluvchilar soni esa roppa-rosa

ta. Haqiqatdan ham ta komponentasi lardan va ta komponentasi lardan iborat bо‘lgan о‘lchovli vektorlar soni ga teng. Chunki bunday vektorlarning soni ularning komponentalarida ta birlarni joylashtirish orqali aniqlanadi va ma’lumki, birlarning joylari sondagi turli xil usul bilan tanlanishi mumkin.
Demak, tasodifiy miqdorning taqsimot qonuni
. (1.4)
Nyuton binomi formulasidan foydalansak, (1.4) formulaga kо‘ra fuyidagiga ega bо‘lamiz:
.
Oxirgi tenglikni hosil qilishda biz ehtimollikning shartidan foydalandik. Unga kо‘ra
.
Shunday qilib,
. (1.5)
Yuqoridagi munosabatdan

ekanligi kelib chiqadi.
Quyidagi teorema tasdig‘i Bernulli sxemasi bо‘yicha ta tajribada muvaffaqiyatlar sonining toq sonda bо‘lishi ehtimolligini hisoblash imkonini beradi.

Download 0,67 Mb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6   7   8   9   10   11




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish