Mundarija: Kirish I bob. Boshlang’ich funksiya va aniqmas integral tushunchasi



Download 1,36 Mb.
bet4/9
Sana21.07.2022
Hajmi1,36 Mb.
#834665
1   2   3   4   5   6   7   8   9
Bog'liq
Kurs ishi

2-ta’rif.  intervalda berilgan  funksiya boshlang‘ich funksiyalarning umumiy ifodasi   bu yerda   shu  funksiyaning aniqmasintegrali deb ataladi va u   kabi belgilanadi. Bunda   – integral belgisi,   – integral ostidagi funksiya,  - integral ostidagi ifoda,  – integrallash o‘zgaruvchisi deb ataladi.
Demak, ta’rifga ko‘ra

bu yerda  funksiya  ning biror boshlang‘ich funksiyasi.
Masalan, [3]   da  bo‘lsin. Bu holda  bo‘lgani uchun  bo‘ladi.
  formuladan ko‘rinadiki, berilgan  funksiyaning biror boshlang‘ich funksiyasini va uning aniqmas integralini topish masalalari deyarli bir xil masalalardir. Shu sababli  funksiyaning boshlang‘ich funksiyasini topishni ham, aniqmas integralini topishni ham  funksiyani integrallash deb ataymiz. Integrallash differensiallashga nisbatan teskari amaldir.
Integrallash amalining to‘g‘ri bajarilganligini tekshirish uchun olingan natijani differensiallash yetarli: differensiallash natijasida integral ostidagi funksiya hosil bo‘lishi lozim.
Masalan, [5]  ekanligini tekshirish uchuntenglikning o‘ng tomonidagifunksiyadan hosila olamiz:  demak, integrallashto‘g‘ri bajarilgan.
Geometrik nuqtai nazardan bu teorema  funksiyaning aniqmas integrali  bir parametrli egri chiziqlar oilasini ifodalaydi . Bu egri chiziqlar oilasi quyidagi xossaga ega: egri chiziqlarga abssissasi  bo‘lgan nuqtasida o‘tkazilgan urinmalar bir-biriga parallel bo‘ladi.
 egri chiziqlar oilasi integral egri chiziqlar deb ataladi. Ular bir-birlari bilan kesishmaydi, biri-biriga urinmaydi. Tekislikning har bir nuqtasidan faqat bitta integral chiziq o‘tadi. Barcha integral chiziqlar biri ikkinchisidan  o‘qiga parallel ko‘chirish natijasida hosil bo‘ladi.
Misol. Abssissasi  bo‘lgan nuqtasida o‘tkazilgan, urinmasining burchak koeffitsienti  formula bilan ifodalanadigan va   nuqtadan o‘tuvchi egri chiziqni toping.
Yechish. Ma’lumki   bu shartni qanoatlantiruvchi y funksiyaning umumiy ifodasi  bo‘ladi. Bu integralni hisoblab   ifodaga ega bo‘lamiz. Izlanayotgan egri chiziq   nuqtadan o‘tadi. Shu sababli funksiya ifodasiga berilgan nuqta koordinatalarini qo‘yamiz va  ning kerakli qiymatini topamiz. Natijada hosil bo‘ladi. Demak, izlanayotgan egri chiziqtenglamasi ekan.
Endi quyidagi savolga javob izlaymiz: biror oraliqda berilgan har qanday  funksiyaning boshlang‘ich funksiyasi mavjudmi?
Ushbu savolning javobi Darbu teoremasidan kelib chiqadi.
Bu teoremaga asosan quyidagi

funksiya   da boshlang‘ich funksiyaga ega emas, chunki bu funksiya 0 va 1 qiymatlarni qabul qilib, ular orasidagi qiymatlarini qabul qilmaydi.
Har qanday funksiyaning ham boshlang‘ich funksiyasi mavjud bo‘lavermaydi, lekin quyidagi teorema o‘rinli.

Download 1,36 Mb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6   7   8   9




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish