2. Konyunksiya amali (k.a). x va y o’zgaruvchi mulohazalar ustida bajariladigan k.a (^), (∙) yoki (&) ko’rinishda va bu amal natijasida xosil bo’ladigan mulohazani xy yoki yoki x&y yoki x&y=min(x,y) ko’rinshda belgilaymiz.
Ta’rif. Ikkala x va y mulohaza chin bo’lsagina ularning kon’yunksiyasi xy mulohaza qiymati chin, x va y ning kamida bitasi yolg’on bo’lsa xy mulohaza yolg’ondir.
Konyunksiya amali «va» bog’lovchisiga mos keladi. Bu tarif jadval ko’rinishida quyidagicha bo’ladi.
x
|
y
|
xy
|
1
0
1
0
|
1
1
0
0
|
1
0
0
0
|
3. Dizyunksiya amali. x va y o’zgaruvchi mulohazalar ustida bajariladigan diz’yunksiya amali v ko’rinishda va bu amal natijasida hosil bo’ladigan mulohazani xvy yoki xvy=max(x,y) ko’rinishda belgilanadi.
Ta’rif. Ikkala x va y mulohaza xam yolg’on bo’lgandagina ularning dizyunksiyasi xvy mulohaza qiymati yolg’on, x va y ning kamida bittasi chin bo’lsa xvy chindir.
Dizyunksiya amali «yoki» bog’lovchisiga mos keladi. Bu tarif jadval ko’rinishida quyidagicha bo’ladi.
x
|
y
|
xvy
|
1
0
1
0
|
1
1
0
0
|
1
1
1
0
|
4. Implikasiya amali. x mulohaza y mulohazani implikasiyalaydi degan amal kiritilib, bu amal ko’rinishda belgilanadi. Bu amal natijasida hosil bo’lgan mulohaza xy shaklda yoziladi.
Ta’rif. Faqat x chin va y yolg’on bo’lgandagina (xy) implikasiya yolg’on bo’lib, boshqa hamma hollarda (xy) chindir.
xy implikasiya ushbu mazmundagi mulohazalarga: x bajarilsa y bajariladi, x dan y hosil bo’ladi, x dan y kelib chiqadi, x bajarilgani uchun y bajariladi va x.k.larga mos keladi.
x
|
y
|
xy
|
1
1
0
0
|
1
0
1
0
|
1
0
1
1
|
Bunday muloxazalar shartli mulohazalar deyiladi.
Matematikada xy implikasiya zaruriy shartni ifodalovchi, yani u bajarilishi uchun x bajarilishi zarur degan teoremaga mos keladi. Matematikada yana yetarli shartni ifodalavchi, yani u bajarilishi uchun x bajarilishi yetarli degan teorema xam implikasiyaga mos keladi.
5. Ekvivalensiya amali. x va u mulohazalar ustida bajariladigan ekvivalensiya amali belgi va buning natijasida hosil bo’ladigan murakab mulohaza xu shaklda yoziladi.
Ta’rif. x va u mulohozalar bir xil qiymatga ega bo’lgandagina xu mulohaza chin bo’lib, boshqa hollarda xu yolg’ondir.
Ekvivalentlik yoki ~ deb belgilanadi, xu ekvivalensiya x bo’lsa u bo’ladi va u bo’lsa x bo’ladi yoki x dan u kelib chiqadi va u dan x kelib chiqadi degan mulohazaga mos keladi, ya’ni xu=(xy)(ux) ko’rinishda ifodalash mumkin.
6. Ikki modul bo’yicha qo’shish. x va u mulohazalar ustida bajariladigan ikki modul bo’yicha qo’shish amali bilan va buning natijasida hosil bo’lgan murakkab mulohaza esaxu shaklda ifodalanadi.
Ta’rif. x va u mulohozalar bir xil qiymatga ega bo’lgandagina xu murakab mulohaza yolђon bo’lib, boshqa hollarda xu chindir.
x
|
u
|
xu
|
1
1
0
0
|
1
0
1
0
|
0
1
1
0
|
7. Pirs strelkasi amali. x va u mulohazalar ustida bajariladigan Pirs strelkasi amali bilan va uning natijasida hosil bo’lgan mulohaza esa xu shaklda ifodalanadi.
Ta’rif. x va u mulohazalarning ikkalasi xam yolђon qiymatga ega bo’lgandagina xu murakab mulohaza chin bo’lib, qolgan boshqa hollarda xu yolђondir.
x
|
u
|
xu
|
u
|
1
1
0
0
|
1
0
1
0
|
0
0
0
1
|
0
0
0
1
|
Albatta mulohazalar to’plamida aniqlanishi mumkin bo’lgan binar amallar yuqorida keltirilgan yetti amal bilan chegaralanmaydi.
Misol: A =- () formulani matematik almashtiring va soddalashtiring.
A = () = [ xu=u]== [=; =]= () = [Yana shunga asosan]=
Demak A formula aynan chin formula ekan.
x y z
|
|
|
|
|
000
001
010
011
100
101
110
111
|
1
1
1
1
0
0
0
0
|
1
0
1
0
1
0
1
0
|
1
1
1
1
1
1
1
1
|
1
1
1
1
1
1
1
1
|
Mantiqiy amallar, mantiqiy operatsiyalar — berilgan hadlari va natijasi mulohaza (fikr) dan iborat amallar. Berilgan hadlar soniga qarab Mantiqiy amallar bir oʻrinli, ikki oʻrinli va h.k. deb yuritiladi. Bir oʻrinli Mantiqiy amallar soni toʻrtta: berilgan fikrdan qatʼi nazar natijasi doim chin (aynan haqiqat) amal, natijasi doim yolgʻon (aynan yolgʻon) amal, natijasi berilgan fikr bilan mos tushadigan amal va, nihoyat, berilgan fikr chin boʻlsa, natijasi yolgʻon, berilgan fikr yolgʻon boʻlsa, natijasi chin boʻladigan amal. Soʻnggi mantiqiy amal bir oʻrinli Mantiqiy amallardan eng muhimi boʻlib, u inkor amal deyiladi. A fikrning inkori ~hA kabi belgilanib, "A emas" deb oʻqiladi. Mas, 1 Oy sayyora — "Oy sayyora emas", (] 2*2=4) — ikki karra ikki toʻrt emas.
Ikkilik kodda yozilgan mashina soʻzlari ustida Mantiqiy amallar mos razryadlar boʻyicha bajarilib, i oʻrniga 1, l oʻrniga 0 olinadi, matn shakliga aylantiriladi va maʼlumot koʻrinishida chiqish qurilmasiga beriladi. Mantiq-informatsion mashina tez ishlashi, "xotira" hajmining kattaligi bilan oddiy hisoblash mashinalaridan farq qiladi. Mantiq-informatsion mashina i. t. natijalarini ishlash, adabiyot topishni avtomatlashtirish, sanoat, qishloq xoʻjaligi va transportga oid statistik maʼlumotlarni, davolash muassasalarida bemorlarni kuzatishdan olingan natijalarni, meteorologik, seysmologik stansiyalardan, Yer sunʼiy yoʻldoshlaridan olingan maʼlumotni ishlash va tarjima ishlarida qoʻllaniladi.[1]
Protsessor tarkibidagi arifmetik-mantiqiy qurilmaning ishlash prinsipini tushunish uchun avval insonning mantiqiy fikrlash va xulosa chiqarish usullarini ko’rib chiqamiz.
Insonlar kundalik hayotda o’zaro muloqot qilish uchun turli mulohazalardan foydalanishadi. Ma’lumki, mulohaza – narsa yoki hodisalarning xususiyatini anglatuvchi darak gapdir. Boshqacha aytganda, mulohaza – rost yoki yolg’onligi haqida so’z yuritish mumkin bo’lgan darak gap.
Mulohazalar sodda va murakkab bo‘lishi mumkin. Biror shart yoki usul bilan bog‘lanmagan hamda faqat bir holatni ifodalovchi mulohazalar sodda mulohazalar deyiladi. Sodda mulohazalar ustida amallar bajarib, murakkab mulohazalarni hosil qilish mumkin. Odatda murakkab mulohazalar sodda mulohazalardan “VA”, “YОKI” kabi bog‘lovchilar, “EMAS” shaklidagi ko‘makchilar yordamida tuziladi.
Mulohazalarni lotin alifbosi harflari bilan belgilash (masalan, A= “Bugun havo issiq”) qabul qilingan. Har bir mulohaza faqat ikkita: “rost” yoki “yolg‘on” mantiqiy qiymatga ega bo‘lishi mumkin. Qulaylik uchun “rost” qiymatni 1 raqami bilan, “yolg‘on” qiymatni esa 0 raqami bilan belgilab olamiz.
A va B sodda mulohazalar bir paytda rost bo‘lgandagina rost bo‘ladigan yangi (murakkab) mulohazani hosil qilish amali mantiqiy ko‘paytirish amali deb ataladi.
Bu amalni konyunksiya (lot. conjunctio– bog’layman) deb ham atashadi. Mantiqiy ko‘paytirish amali ikki yoki undan ortiq sodda mulohazalarni “VA” bog‘lovchisi bilan bog‘laydi hamda “A va B” , “A and B” , “A Λ B” , “A · B” kabi ko‘rinishda yoziladi. Mantiqiy ko‘paytirishni ifodalaydigan quyidagi jadval rostlik jadvali deb ataladi:
A
|
B
|
A Λ B
|
1
|
1
|
1
|
1
|
0
|
0
|
0
|
1
|
0
|
0
|
0
|
0
|
A va B mulohazalarning kamida bittasi rost bo‘lganda rost bo‘ladigan yangi murakkab mulohazani hosil qilish amali mantiqiy qo‘shish amali deb ataladi.
Bu amalni dizyunksiya (lot. disjunctio – ajrataman) deb ham atashadi Mantiqiy qo‘shish amali ikki yoki undan ortiq sodda mulohazalarni “YOKI” bog‘lovchisi bilan bog‘laydi hamda va “A yoki B”, “A or B” , “A V B”, “A + B” kabi ko‘rinishlarda yoziladi.
Mantiqiy qo‘shish amalining rostlik jadvali quyidagicha:
A
|
B
|
A V B
|
1
|
1
|
1
|
1
|
0
|
1
|
0
|
1
|
1
|
0
|
0
|
0
|
A mulohaza rost bo‘lganda yolg‘on, yolg‘on bo‘lganda esa rost qiymat oladigan mulohaza hosil qilish amali mantiqiy inkor amali deb ataladi.
Bu amalni inversiya (lot. Inversio – to’ntaraman) deb ham atashadi Mantiqiy inkor amali “A EMAS” , “not A” , “ ᒣ A” , “” ko‘rinishlarda yoziladi. Mantiqiy inkor amalining rostlik jadvali quyidagicha:
Ko‘rinib turibdiki, mantiqiy o‘zgaruvchilar, munosabatlar, mantiqiy amallar va qavslar yordamida mantiqiy ifodalar hosil qilish mumkin ekan.
Mantiqiy ifodalarda mantiqiy amallar quyidagi tartibda bajariladi: inkor ( ù ), mantiqiy ko‘paytirish ( Ù ), mantiqiy qo‘shish ( Ú ).
Teng kuchli yoki bir xil amallar ketma-ketligi bajarilayotganda amallar chapdan o‘ngga qarab tartib bilan bajariladi, ifodada qavslar ishtirok etganda dastlab qavslar ichidagi amallar bajariladi. Ichma-ich joylashgan qavslarda eng ichkaridagi qavs ichidagi amallar eng avval bajariladi.
Do'stlaringiz bilan baham: |