Modelling, prediction and classification of student academic performance using artificial neural networks


ANN performance evaluation criteria



Download 302,61 Kb.
bet5/6
Sana08.07.2022
Hajmi302,61 Kb.
#757549
1   2   3   4   5   6
Bog'liq
Modelling2222

3.4 ANN performance evaluation criteria
For the later data analysis, in order to evaluate the per­formance of ANN, this paper introduces several new per­spectives that mitigates the arising of over-fitting issues to ensure the appropriateness of ANN performance. The evaluation includes the computation of Mean Square Error (MSE), regression analysis, error histogram and con­fusion matrix. A well-trained ANN model should have low MSE value (close to zero), which means that the predicted outputs converge closely to the target outputs (tj). MSE is calculated as:

NN ,=, ы

N, N:

(7)

2




3.05

2011 2012 2013
Year

Fig. 1 Yearly average students' CGPA performance for the intake year 2011-2013


Curve (ROC) is also employed that detects the trade-off between the TP rate and FP rate, and also the area under the ROC curve (AUC) [20]. ROC is widely used in machine learning in verifying and evaluating performance of classifications [19].

  1. Results

This section presents the statistical findings, the ANN con­figuration and the performance based on the obtained yearly academic performance educational data of 1,000 students (175 female and 810 male students) for the intake year 2011-2013 from the University Q.

    1. Statistical evaluations

Figure 1 presents the performance of yearly students' aver­age CGPA for the intake year of 2011-2013. Additionally, the ANOVA for three consecutive academic performance years with p < 0.05 indicates that there is significant differ­ence of students' yearly CGPA performance, with notable improvements in their performance for next two academic years.

Download 302,61 Kb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish