Modelling, prediction and classification of student academic performance using artificial neural networks



Download 302,61 Kb.
bet2/6
Sana08.07.2022
Hajmi302,61 Kb.
#757549
1   2   3   4   5   6
Bog'liq
Modelling2222

CGPA = , (1)
ci
where c, denotes the credit hours per course i and g, is the grade point received per course i.

    1. Statistical hypothesis testing

Prior to the ANN modelling, it is necessary to examine the relationship between the socio-economic, family and edu­cation background of students and their academic per­formance. Statistical evaluations are performed initially in this study, including correlations, two-sample f-test and ANOVA (single factor). Pearson correlation coefficients are calculated to measure the linear the relationships of five core entrance examination subjects and the resultant CGPA. Those correlated variables are used further as input neurons for the ANN modelling. For f-test and ANOVA, a significance level of p = 0.05 is chosen to test the signifi­cant difference, notably the mean CGPA difference in two or more sample groups. Hypothesis testing in this case is performed to test whether male and female students, geographical locations, roles of parents, types of students have significant influence on the resultant CGPA.

    1. Neural network modelling

ANN in this case is used for neural prediction of students' CGPA and the data classification of data through input observations. Both schemes are performed based on supervised machine learning. The ANN in this paper is modelled following the earlier research works [5, 7, 13]. It is not the scope of this paper to compare the effective­ness of ANN performance with other machine learning techniques.
Typically, the ANN model can simply be expressed as a mathematical function:
Y = f (X, W), (2)

Download 302,61 Kb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish