Modeling and Simulation of Reaction and Fractionation Systems for the Industrial Residue Hydrotreating Process



Download 7,48 Mb.
Pdf ko'rish
bet12/42
Sana01.01.2022
Hajmi7,48 Mb.
#289982
1   ...   8   9   10   11   12   13   14   15   ...   42
Bog'liq
processes-08-00032 (1)

Figure 4. Kinetic scheme for the six-lump model of asphaltene hydrogenation. 

Since the constants of LHHW in Equations (1) and (2) ascertained by basic research are scarcely 

found, general kinetic reactions are applied to describe the reaction network of petroleum based on 

the Arrhenius equation. And researchers have different opinions about the order of the reactions 

[27,28]. In this paper, it is presumed that the whole reaction pathway consists of first-order reactions. 

In addition, due to the low gas yield of the entire reaction system, the volume of the reaction system 

is assumed to be immutable.   

The reaction rate    can also be expressed in the form of the power law model: 

,

,

=



m i

m j

i

j

R

kC C

 



(3) 

where    denotes the reaction rate constant; 



i

C

 and 


j

C

  are the molar concentrations of lump 



i

 

and  , respectively; 



,

m i  and  ,

m j  denote the 

th

m

  reaction orders of lump 



i

 and  , respectively. 

In this paper, all constants for 

,

m i   are set to 1.   

In fact, the data obtained from the factory is based on mass flow rate. It is difficult to acquire 

mole fractions of the lumps. Instead, the mass concentration is adopted to calculate the kinetic 

parameters. Accordingly, the rate equation can be rewritten as: 

m,i

m, j

l

l

i

j

R = -k y y

 

(4) 



where 

i

y

 and 


j

y

  indicate the mass concentrations of lump 



i

 and  , respectively; 



l

k

  is the rate 

constant of the 

th

l

 reaction for lump 



i

 and  , Thus, based on the reaction network of asphaltene 

conversion, the mathematical equations of the kinetic model can be rewritten in the following forms: 

1

1 1



2 1

3 1


4 1

(

)



dy

k y

k y

k y

k y

dt

= −


+

+

+



 

(5) 


2

1 1


5 2

6 2


7 2

(

)



dy

k y

k y

k y

k y

dt

=



+

+

 



(6) 

3

2 1



5 2

8 3


-

dy

k y

k y k y

dt

=

+



 

(7) 


4

6 2


8 3

dy

k y

k y

dt

=

+



 

(8) 


Figure 4.

Kinetic scheme for the six-lump model of asphaltene hydrogenation.

Since the constants of LHHW in Equations (1) and (2) ascertained by basic research are scarcely

found, general kinetic reactions are applied to describe the reaction network of petroleum based on the

Arrhenius equation. And researchers have di

fferent opinions about the order of the reactions [

27

,

28



]. In

this paper, it is presumed that the whole reaction pathway consists of first-order reactions. In addition,

due to the low gas yield of the entire reaction system, the volume of the reaction system is assumed to

be immutable.

The reaction rate R can also be expressed in the form of the power law model:

R

=



−kC

m,i


i

C

m,j



j

(3)


where k denotes the reaction rate constant; C

i

and C



j

are the molar concentrations of lump i and j,

respectively; m, i and m, j denote the m

th

reaction orders of lump i and j, respectively. In this paper, all



constants for m, i are set to 1.

In fact, the data obtained from the factory is based on mass flow rate. It is di

fficult to acquire mole

fractions of the lumps. Instead, the mass concentration is adopted to calculate the kinetic parameters.

Accordingly, the rate equation can be rewritten as:

R

l



=

−k

l



y

m,i


i

y

m,j



j

(4)


where y

i

and y



j

indicate the mass concentrations of lump i and j, respectively; k

l

is the rate constant of



the l

th

reaction for lump i and j, Thus, based on the reaction network of asphaltene conversion, the



mathematical equations of the kinetic model can be rewritten in the following forms:

dy

1



dt

=



(

k

1



y

1

+



k

2

y



1

+

k



3

y

1



+

k

4



y

1

)



(5)

dy

2



dt

=

k



1

y

1



(

k



5

y

2



+

k

6



y

2

+



k

7

y



2

)

(6)



dy

3

dt



=

k

2



y

1

+



k

5

y



2

− k


8

y

3



(7)

dy

4



dt

=

k



6

y

2



+

k

8



y

3

(8)




Processes 2020, 8, 32

7 of 19


dy

5

dt



=

k

3



y

1

+



k

7

y



2

(9)


dy

6

dt



=

k

4



y

1

(10)




Download 7,48 Mb.

Do'stlaringiz bilan baham:
1   ...   8   9   10   11   12   13   14   15   ...   42




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish