Phantom - это интерпретируемый язык, разработанный для крупномасштабных интерактивных распределенных программ типа систем конференцсвязи, игр со многими игроками, и совместных инструментальных средств работы. Ядро языка основано на безопасном, расширенном подмножестве языка программирования Modula-3 и поддерживает ряд возможностей современного программирования, включая статическую типизацию, неявные объявления, объекты, облегченные процессы, и высокоуровневые функции.
Penguin - модуль языка Perl 5, который обеспечивает, набор функций для: (1) посылки шифрованного Perl-кода с цифровой подписью к удаленной машине, на которой он будет затем выполнен; (2) получения кода и, в зависимости от того, кем он подписан, его выполнения с соблюдением соответствующих прав. Комбинация этих функций дает возможность для непосредственного кодирования на языке Perl алгоритмов обработки безопасных финансовых сделок по Internet, мобильных агентов, собирающих информацию, “оживленных” Web-брoузеров, распределенных вычислений, удаленного обновления программного обеспечения, удаленного администрирования, распространения информации, конструкторов сетевых программ, и так далее.
Сводные характеристики языков и их сравнительные характеристики приведены соответственно в таблицах 1 и 2.
7. Заключение
Технология многоагентных систем, хотя и насчитывает уже более чем десятилетнюю историю своего активного развития, находится в настоящее время еще в стадии становления. Ведутся активные исследования в области теоретических основ формализации основных понятий и компонент систем, в особенности в области формализации ментальных понятий. Основные достижения в этой части пока не очень ориентируются на аспекты практической реализации и пока далеки от практики. В частности, при формализации ментальных понятий полностью игнорируются все разработанные в ИИ подходы для работы с плохо структурируемыми понятиями, не вполне определенными понятиями, методы, которые базируются на вероятность и нечеткость. Представляется, что это обширное, новое и чистое поле деятельности для соответствующих специалистов.
Создание эффективно работающих реальных приложений требует еще достаточно больших усилий в области методов организации кооперативного решения задач агентами многоагентной системы, методов организации переговоров при разрешении конфликтов и создания соответствующих протоколов. В этой области недостаточно используются теоретические достижения в области распределенных систем и параллельных вычислений. Пока полностью игнорируются известные результаты и достижения советских и российских ученых, в частности, рефлексивные модели и методы рефлексивного управления, предложенные Лефевром [65], модели коллективного поведения автоматов с линейной тактикой и памятью [61, 66]. Отметим, что эти результаты могут быть использованы, например, в задачах типа “electronic market place” ввиду массового и случайного характера процесса обслуживания клиентов, в задачах составления расписаний при рандомизированном подходе и ряде других задач, где метафору агента и многоагентной системы предлагается использовать как модель предоставления соответствующего сервиса.
В сообществе специалистов по многоагентным системам как одна из перспективных моделей рассматривается модель самообучающегося агента. Однако при этом делаются ссылки на результаты в области извлечения знаний и машинного обучения, полученные ранее в искусственном интеллекте применительно к экспертным системам. Очевидно, что применительно к многоагентной системе задача обучения имеет много специфики по сравнению с задачами в общей постановке, однако, эта специфика пока не изучается и не ведутся исследования по этой проблеме. Весьма специфична и задача обучения агентов коллективному поведению, ведь кооперативное решение задач подразумевает совместное использование знаний нескольких агентов. Этот вопрос тоже пока остается вне поля зрения специалистов по многоагентных систем.
Работы в области многоагентных систем, в особенности разработка приложений, требуют привлечение знаний и технологий из ряда областей, которые ранее были вне поля зрения специалистов по искусственному интеллекту. Прежде всего это относится параллельным вычислениям, технологии открытой распределенной обработки, обеспечения безопасности и мобильности агентов. Необходимы знания в области сетевых компьютерных технологий и, в особенности, в области программирования в Internet [63].
Технология многоагентных систем не является просто объединением различных результатов в области искусственного интеллекта. Интеграция, которая приводит к парадигме многоагентных систем, привносит ряд принципиально новых свойств и возможностей в информационные технологии и по существу представляет собой качественно новый, более высокий уровень ее развития, тот уровень, который позволяет прогнозировать ее ведущее положение в ближайшие десятилетия. Специалистам в области искусственного интеллекта здесь принадлежит ведущая роль.
Do'stlaringiz bilan baham: |