Кодирование с использованием ортогональных преобразований
Метод ДИКМ основан на декорреляции яркостей элементов изображения, квантовании и кодировании полученных ошибок квантования. Эти же основные операции применяются и при трансформационном кодировании. Однако, при ДИКМ декорреляция выполнялась в пространственной области, а в случае трансформационного кодирования декорреляция производится за счет преобразования изображения в матрицу коэффициентов преобразования (разложения). Размер матрицы коэффициентов преобразования равен размеру исходного изображения. Этот метод, как и ДИКМ, относится к методам кодирования с потерей информации. Квантованию и кодированию в этом случае подвергаются значения коэффициентов преобразования. Важным является то обстоятельство, что энергия коэффициентов преобразования распределена неравномерно между спектральными коэффициентами. При квантовании более информативные коэффициенты (НЧ) квантуются точнее, а менее информативные (ВЧ) квантуются грубее или отбрасываются. На этом этапе и осуществляется сжатие изображения. Дополнительного сжатия достигают применением кодирования. Обычно применяется энтропийное кодирование, например, рассмотренное кодирование по методу Хаффмана.
При декодировании изображения последовательно выполняются все операции кодирования в обратном порядке: декодируется поток, все коэффициенты преобразования домножаются на соответствующие весовые множители, получаемые как обратные коэффициентам квантования величины. А затем по восстановленным коэффициентам разложения путем обратного ортогонального преобразования восстанавливается само изображение.
Метод преобразования непрерывного сигнала в множество некоррелированных коэффициентов разработан Каруненом (H. Karhunen) и Лоэвом (M. Loeve). Хотеллинг (H. Hotelling) первым предложил метод преобразования дискретных сигналов в набор некоррелированных коэффициентов. В процессе преобразований изображения f(x,y), имеющего сильные корреляционные связи между соседними отсчетами, происходит процесс декорреляции. Значения коэффициентов преобразования F(u,v) оказываются некоррелированными. Именно при преобразовании
Карунена-Лоэва достигается максимальная концентрация энергии. Однако применение получили те преобразования, вычислительная сложность которых меньше, хотя они и не позволяют полностью декоррелировать коэффициенты преобразования. К таким преобразованиям относится, например, дискретное преобразование Фурье.
Рассмотрим более подробно ортогональное преобразование изображения, представленного в виде массива (матрицы) чисел f(x,y), размер которого NxM, где N - число столбцов, М - число строк в изображении, x - номер столбца; y - номер строки. Спектральные коэффициенты F(u,v) вычисляются путем прямого ортогонального преобразования изображения следующим образом:
M 1N 1
F(u,v)= f (x,y) a( x,y;u,v) , (8.11)
y 0 x 0
где a(x,y;u,v) - ядро прямого преобразования (базисные функции, по которым происходит разложение); u,v - индексы спектральных коэффициентов в матрице спектральных коэффициентов, соответствующие базисным функциям. Общее число базисных функций составляет NM, каждая определяется парой индексов (u,v).
Как видно из (8.11), величина каждого из коэффициентов F(u,v) определяется всеми элементами изображения, поэтому не несет информации о локальных свойствах изображения в пространственной области.
Исходное изображение получается путем обратного ортогонального преобразования:
M 1 N 1
f(x,y)=
F u,vbx, y;u,v,
Do'stlaringiz bilan baham: |