Another possibility not directly anticipated by Hebb is real-time changes in the neuron connections themselves.
Recent scanning results show rapid growth of dendrite spikes and new synapses, so this must be considered an
important mechanism. Experiments have also demonstrated a rich array of learning behaviors on the synaptic level that
go beyond simple Hebbian models. Synapses can change their state rapidly, but they then begin to decay slowly with
continued
stimulation, or in some a lack of stimulation, or many other variations.
56
Although contemporary models are far more complex than the simple synapse models devised by Hebb, his
intuitions have largely proved correct. In addition to Hebbian synaptic plasticity, current models include global
processes that provide a regulatory function. For example, synaptic scaling keeps synaptic potentials from becoming
zero (and thus being unable to be increased through multiplicative approaches) or becoming excessively high and
thereby dominating a network. In vitro experiments have found synaptic scaling in cultured networks of neocortical,
hippocampal, and spinal-cord neurons.
57
Other mechanisms are sensitive to overall spike timing and the distribution of
potential across many synapses. Simulations have demonstrated the ability of these recently discovered mechanisms to
improve learning and network stability.
The most exciting new development in our understanding of the synapse is that the topology of the synapses and
the connections they form are continually changing. Our first glimpse into the rapid changes in synaptic connections
was revealed by an innovative scanning system that requires a genetically modified animal whose neurons have been
engineered to emit a fluorescent green light. The system can image living neural tissue
and has a sufficiently high
resolution to capture not only the dendrites (interneuronal connections) but the spines: tiny projections that sprout from
the dendrites and initiate potential synapses.
Neurobiologist Karel Svoboda and his colleagues at Cold Spring Harbor Laboratory on Long Island used the
scanning system on mice to investigate networks of neurons that analyze information from the whiskers, a study that
provided a fascinating look at neural learning. The dendrites continually grew new spines. Most of these lasted only a
day or two, but on occasion a spine would remain stable. "We believe that the high turnover that we see might play an
important role in neural plasticity, in that the sprouting spines reach out to probe different presynaptic partners on
neighboring neurons,” said Svoboda. "If a given connection is favorable, that is, reflecting a desirable kind of brain
rewiring, then these synapses are stabilized and become more permanent. But most of these
synapses are not going in
the right direction, and they are retracted."
58
Another consistent phenomenon that has been observed is that neural responses decrease over time, if a particular
stimulus is repeated. This adaptation gives greatest priority to new patterns of stimuli. Similar work by neurobiologist
Wen-Biao Gan at New York University's School of Medicine on neuronal spines in the visual cortex of adult mice
shows that this spine mechanism can hold long-term memories: "Say a 10-year-old kid uses 1,000 connections to store
a piece of information. When he is 80, one-quarter of the connections will still be there, no matter how things change.
That's why you can still remember your childhood experiences." Gan also explains, "Our idea was that you actually
don't need to make many new synapses and get rid of old ones when you learn, memorize.
You just need to modify the
strength of the preexisting synapses for short-term learning and memory. However, it's likely that a few synapses are
made or eliminated to achieve long-term memory."
59
The reason memories can remain intact even if three quarters of the connections have disappeared is that the
coding method used appears to have properties similar to those of a hologram. In a hologram, information is stored in
a diffuse pattern throughout an extensive region. If you destroy three quarters of the hologram, the entire image
remains intact, although with only one quarter of the resolution. Research by Pentti Kanerva, a neuroscientist at
Redwood Neuroscience Institute, supports the idea that memories are dynamically distributed throughout a region of
neurons. This explains why older memories persist but nonetheless appear to "fade," because their resolution has
diminished.
Do'stlaringiz bilan baham: