evaluators compared diagnosis and treatment recommendations by MYCIN to those of human doctors and found that
MYCIN did as well as or better than any of the physicians.
165
It became apparent from this research that human decision making typically is based not on definitive logic rules
but rather on "softer" types of evidence. A dark spot on a medical imaging test may suggest cancer, but other factors
such as its exact shape, location, and contrast are likely to influence a diagnosis. The hunches of human decision
making are usually influenced by combining many pieces of evidence from prior experience, none definitive by itself.
Often we are not even consciously aware of many of the rules that we use.
By the late 1980s expert systems were incorporating the idea of uncertainty and could combine many sources of
probabilistic evidence to make a decision. The MYCIN system pioneered this approach. A typical MYCIN "rule"
reads:
If the infection which requires therapy is meningitis, and the type of the infection is fungal, and organisms
were not seen on the stain of the culture, and the patient is not a compromised host, and the patient has been
to an area that is endemic for coccidiomycoses, and the race of the patient is Black, Asian, or Indian, and the
cryptococcal antigen in the csf test was not positive, THEN there is a 50 percent chance that cryptococcus is
not one of the organisms which is causing the infection.
Although a single probabilistic rule such as this would not be sufficient by itself to make a useful statement, by
combining thousands of such rules the evidence can be marshaled and combined to make reliable decisions.
Probably the longest-running expert system project is CYC (for enCYClopedic), created by Doug Lenat and his
colleagues at Cycorp. Initiated in 1984, CYC has been coding commonsense knowledge to provide machines with an
ability to understand the unspoken assumptions underlying human ideas and reasoning. The project has evolved from
hard-coded logical rules to probabilistic ones and now includes means of extracting knowledge from written sources
(with human supervision). The original goal was to generate one million rules, which reflects only a small portion of
what the average human knows about the world. Lenat's latest goal is for CYC to master "100 million things, about the
number a typical person knows about the world, by 2007."
166
Another ambitious expert system is being pursued by Darryl Macer, associate professor of biological sciences at
the University of Tsukuba in Japan. He plans to develop a system incorporating all human ideas.
167
One application
would be to inform policy makers of which ideas are held by which community.
Do'stlaringiz bilan baham: