Membrane Gas Separation



Download 4,39 Mb.
Pdf ko'rish
bet107/233
Sana13.04.2022
Hajmi4,39 Mb.
#549133
1   ...   103   104   105   106   107   108   109   110   ...   233
Bog'liq
206. Membrane Gas Separation

8.3.3

2
 /N 
2
and CO 
2
 /CH 
4
Selectivities of HBPI – Silica Hybrid Membranes 
The ideal gas selectivity for the combination of gases A and B (  
α
  (A/B)) is defi ned by the 
following equation [28] ;
α
α
α
A B
A
B
A
B
A
B
A B
A B
(
)
=
( )
( )
=
( )
( )
×
( )
( )
=
(
)
×
(
)
P
P
D
D
S
S
D
S
(8.5)
where  
α
 
D
(A/B) is the diffusivity selectivity and  
α
 
S
(A/B) is the solubility selectivity. The 

2
/N 
2
and CO 
2
/CH 
4
selectivities of the hybrid membranes are listed in Tables 8.2 – 8.4


152
Membrane Gas Separation
Table 8.2  Permeability coeffi cients and ideal selectivity of HBPI – silica hybrid membranes 
at 76 cmHg and 25 ° C 
Sample
P
×
10 
10
, (cm 
3
(STP)cm/cm 
2
s cmHg)
 
α
  (O 
2
/N 
2
)
 
α
  (CO 
2
/CH 
4
)
CO 
2

2

2
CH 
4
6FDA - TAPOB
7.4
1.5
0.23
0.098
6.8
75
TMOS, 10 wt% SiO 
2
10
2.0
0.31
0.13
6.6
79
TMOS, 20 wt% SiO 
2
13
2.1
0.32
0.16
6.7
82
TMOS, 30 wt% SiO 
2
23
3.0
0.46
0.24
6.6
95
TMOS/MTMS, 10 
wt% SiO 
2
13
2.7
0.41
0.20
6.6
65
TMOS/MTMS, 20 
wt% SiO 
2
28
5.4
0.89
0.45
6.0
62
TMOS/MTMS, 30 
wt% SiO 
2
44
7.9
1.3
0.74
5.9
59
TMOS/MTMS, 40 
wt% SiO 
2
72
12
2.3
1.4
5.2
53
TMOS/MTMS, 50 
wt% SiO 
2
133
22
4.5
2.8
5.0
48
MTMS, 10 wt% SiO 
2
23
4.4
0.75
0.45
5.9
51
MTMS, 20 wt% SiO 
2
53
9.5
1.9
1.5
4.9
34
MTMS, 30 wt% SiO 
2
99
18
4.1
4.1
4.3
24
MTMS, 40 wt% SiO 
2
158
28
7.6
10
3.7
15
MTMS, 50 wt% SiO 
2
251
46
14
20
3.4
12
ODPA - TAPOB
0.63
0.13
0.013
0.0064
10
98
TMOS, 10 wt% SiO 
2
0.93
0.18
0.017
0.0094
11
98
TMOS, 20 wt% SiO 
2
0.88
0.17
0.017
0.0078
10
112
TMOS, 30 wt% SiO 
2
1.2
0.22
0.024
0.011
9.0
111
TMOS/MTMS, 10 
wt% SiO 
2
1.3
0.27
0.029
0.022
9.1
58
TMOS/MTMS, 20 
wt% SiO 
2
2.6
0.48
0.062
0.038
7.7
68
TMOS/MTMS, 30 
wt% SiO 
2
6.7
1.2
0.16
0.11
7.3
62
MTMS, 10 wt% SiO 
2
1.8
0.37
0.052
0.036
7.2
51
MTMS, 20 wt% SiO 
2
3.9
0.85
0.13
0.092
6.7
43
MTMS, 30 wt% SiO 
2
17
3.1
0.61
0.64
5.1
26
PMDA - TAPOB
3.3
0.59
0.088
0.066
6.7
50
TMOS, 10 wt% SiO 
2
4.1
0.69
0.11
0.069
6.4
60
TMOS, 20 wt% SiO 
2
4.6
0.71
0.10
0.063
7.0
73
TMOS, 30 wt% SiO 
2
7.1
1.0
0.15
0.073
6.8
97
TMOS/MTMS, 10 
wt% SiO 
2
4.8
0.76
0.12
0.081
6.5
59
TMOS/MTMS, 20 
wt% SiO 
2
13
1.9
0.31
0.22
6.1
58
TMOS/MTMS, 30 
wt% SiO 
2
33
4.9
0.89
0.68
5.5
48
MTMS, 10 wt% SiO 
2
9.3
1.5
0.25
0.21
5.9
44
MTMS, 20 wt% SiO 
2
30
4.8
1.0
1.0
4.6
30
MTMS, 30 wt% SiO 
2
55
8.8
2.2
2.5
4.0
22


Physical and Gas Transport Properties
153
Table 8.3  Diffusion coeffi cients and diffusivity selectivity of HBPI – silica hybrid 
membranes at 76 cmHg and 25 ° C 
Sample
D
×
10 
8
(cm 
2
/s)
 
α
 
D
(O 
2
/N 
2
)
 
α
 
D
(CO 
2
/CH 
4
)
CO 
2

2

2
CH 
4
6FDA - TAPOB
0.30
1.4
0.25
0.028
5.8
11
TMOS, 10 wt% SiO 
2
0.35
1.5
0.29
0.026
5.2
13
TMOS, 20 wt% SiO 
2
0.37
1.3
0.25
0.030
5.3
12
TMOS, 30 wt% SiO 
2
0.57
1.7
0.29
0.040
5.8
14
TMOS/MTMS, 10 
wt% SiO 
2
0.59
2.1
0.46
0.060
4.7
9.9
TMOS/MTMS, 20 
wt% SiO 
2
1.2
4.0
0.90
0.090
4.4
13
TMOS/MTMS, 30 
wt% SiO 
2
1.7
5.9
1.2
0.17
5.1
10
TMOS/MTMS, 40 
wt% SiO 
2
2.6
7.9
1.8
0.25
4.4
11
TMOS/MTMS, 50 
wt% SiO 
2
5.2
14
3.7
0.63
3.7
8.2
MTMS, 10 wt% SiO 
2
1.0
3.8
0.83
0.13
4.5
8.1
MTMS, 20 wt% SiO 
2
2.6
8.7
2.2
0.42
4.0
6.0
MTMS, 30 wt% SiO 
2
5.4
16
4.8
1.2
3.4
4.4
MTMS, 40 wt% SiO 
2
9.9
28
9.3
3.7
3.0
2.7
MTMS, 50 wt% SiO 
2
17
46
17
6.8
2.6
2.5
ODPA - TAPOB
0.030
0.16
0.021
0.0019
7.7
16
TMOS, 10 wt% SiO 
2
0.039
0.19
0.025
0.0025
7.6
16
TMOS, 20 wt% SiO 
2
0.033
0.17
0.022
0.0021
7.6
16
TMOS, 30 wt% SiO 
2
0.040
0.19
0.024
0.0026
7.6
15
TMOS/MTMS, 10 
wt% SiO 
2
0.071
0.36
0.060
0.011
6.1
6.3
TMOS/MTMS, 20 
wt% SiO 
2
0.13
0.54
0.10
0.016
5.2
8.4
TMOS/MTMS, 30 
wt% SiO 
2
0.34
1.3
0.24
0.027
5.4
13
MTMS, 10 wt% SiO 
2
0.12
0.54
0.11
0.012
5.0
9.4
MTMS, 20 wt% SiO 
2
0.33
1.1
0.23
0.037
4.6
9.1
MTMS, 30 wt% SiO 
2
1.1
3.6
0.89
0.25
4.1
4.3
PMDA - TAPOB
0.14
0.57
0.11
0.020
5.0
6.9
TMOS, 10 wt% SiO 
2
0.16
0.64
0.11
0.023
5.9
7.1
TMOS, 20 wt% SiO 
2
0.14
0.53
0.090
0.012
5.9
12
TMOS, 30 wt% SiO 
2
0.19
0.61
0.11
0.019
5.3
10
TMOS/MTMS, 10 
wt% SiO 
2
0.17
0.70
0.13
0.019
5.4
9.4
TMOS/MTMS, 20 
wt% SiO 
2
0.45
1.6
0.34
0.071
4.6
6.4
TMOS/MTMS, 30 
wt% SiO 
2
1.1
3.2
0.77
0.13
4.1
8.5
MTMS, 10 wt% SiO 
2
0.43
1.0
0.35
0.066
2.9
6.5
MTMS, 20 wt% SiO 
2
1.5
4.8
1.5
0.40
3.2
3.8
MTMS, 30 wt% SiO 
2
2.8
9.0
3.6
0.71
2.5
4.0


154
Membrane Gas Separation
and  
α
  (O 
2
/N 
2
) and  
α
  (CO 
2
/CH 
4
) are plotted against O 
2
and CO 
2
permeability coeffi cients 
in Figures 8.6 and 8.7 , respectively.
In Figure 8.6 ,  
α
  (O 
2
/N 
2
) values of the hybrid membranes slightly decrease with increas-
ing O 
2
permeability along with the upper bound trade - off line for O 
2
/N 
2
separation dem-
onstrated by Robeson [29] . Nevertheless, the hybrid membranes show relatively high 
 
α
  (O 
2
/N 
2
) values just below the upper bound. 
Table 8.4  Solubility coeffi cients and solubility selectivity of HBPI – silica hybrid membranes 
at 76 cmHg and 25 ° C 
Sample
S
×
10 
2
(
cm STP cm
cmHg
polym
3
3
(
)
)
 
α
 
S
(O 
2
/

2
)
 
α
 
S
(CO 
2
/
CH 
4
)
CO 
2

2

2
CH 
4
6FDA - TAPOB
25
1.1
0.92
3.5
1.2
7.0
TMOS, 10 wt% SiO 
2
30
1.4
1.1
5.0
1.3
5.9
TMOS, 20 wt% SiO 
2
35
1.7
1.3
5.2
1.3
6.8
TMOS, 30 wt% SiO 
2
41
1.8
1.6
6.0
1.1
6.7
TMOS/MTMS, 10 wt% SiO 
2
22
1.3
0.90
3.3
1.4
6.6
TMOS/MTMS, 20 wt% SiO 
2
24
1.4
1.0
4.9
1.4
4.9
TMOS/MTMS, 30 wt% SiO 
2
26
1.3
1.2
4.4
1.2
5.9
TMOS/MTMS, 40 wt% SiO 
2
27
1.5
1.3
5.5
1.2
5.0
TMOS/MTMS, 50 wt% SiO 
2
26
1.6
1.2
4.4
1.3
5.8
MTMS, 10 wt% SiO 
2
23
1.2
0.90
3.6
1.3
6.3
MTMS, 20 wt% SiO 
2
21
1.1
0.90
3.7
1.2
5.6
MTMS, 30 wt% SiO 
2
19
1.1
0.86
3.4
1.3
5.4
MTMS, 40 wt% SiO 
2
16
1.0
0.82
2.7
1.2
5.8
MTMS, 50 wt% SiO 
2
15
1.0
0.79
3.0
1.3
4.9
ODPA - TAPOB
21
0.81
0.60
3.3
1.3
6.3
TMOS, 10 wt% SiO 
2
24
0.98
0.70
3.8
1.4
6.2
TMOS, 20 wt% SiO 
2
26
1.0
0.78
3.6
1.3
7.2
TMOS, 30 wt% SiO 
2
29
1.2
1.0
4.0
1.2
7.3
TMOS/MTMS, 10 wt% SiO 
2
18
0.74
0.49
2.0
1.5
9.1
TMOS/MTMS, 20 wt% SiO 
2
20
0.90
0.61
2.4
1.5
8.1
TMOS/MTMS, 30 wt% SiO 
2
20
0.92
0.69
4.0
1.3
5.0
MTMS, 10 wt% SiO 
2
16
0.69
0.48
2.9
1.4
5.4
MTMS, 20 wt% SiO 
2
12
0.80
0.54
2.5
1.5
4.7
MTMS, 30 wt% SiO 
2
16
0.85
0.69
2.6
1.2
5.9
PMDA - TAPOB
24
1.0
0.77
3.3
1.3
7.3
TMOS, 10 wt% SiO 
2
26
1.1
1.0
3.1
1.1
8.5
TMOS, 20 wt% SiO 
2
32
1.3
1.1
5.3
1.2
6.0
TMOS, 30 wt% SiO 
2
38
1.7
1.3
4.0
1.3
9.7
TMOS/MTMS, 10 wt% SiO 
2
27
1.1
0.89
4.4
1.2
6.3
TMOS/MTMS, 20 wt% SiO 
2
29
1.2
0.93
3.1
1.3
9.2
TMOS/MTMS, 30 wt% SiO 
2
29
1.5
1.1
5.1
1.3
5.7
MTMS, 10 wt% SiO 
2
22
1.4
0.71
3.2
2.0
6.7
MTMS, 20 wt% SiO 
2
20
1.0
0.69
2.5
1.5
7.9
MTMS, 30 wt% SiO 
2
19
1.0
0.60
3.5
1.6
5.5


Physical and Gas Transport Properties
155
Figure 8.5 CO 
2
permeability (a), diffusion (b) and solubility (c) coeffi cients of 6FDA -
 TAPOB HBPI – silica hybrid membranes plotted against silica content
Figure 8.6 Ideal O 
2
 /N 
2
selectivity (  
α
 (O 
2
 /N 
2
 )) of HBPI – silica hybrid membranes plotted 
against O 
2
permeability coeffi cient
For CO 
2
/CH 
4
separation, more attractive behaviour is observed (Figure 8.7 ). The values 
of
 
α
  (CO 
2
/CH 
4
) of the hybrid membranes prepared solely with TMOS increase with 
increasing silica content in connection with increased CO 
2
permeability. The remarkable 
CO 
2
/CH 
4
separation behaviour of the HBPI 
– 
silica hybrid membranes prepared with 
TMOS is considered to be due to the characteristic distribution and interconnectivity of 
free volume elements created by the incorporation of silica, which provides a size 
-
selective CO 
2
/CH 
4
separation ability [11] . On the other hand,  
α
  (CO 
2
/CH 
4
) values of the 


156
Membrane Gas Separation
MTMS systems decrease with increasing CO 
2
permeability in connection with increased 
silica content as similar as the cases of conventional polymeric membranes. The distinc-
tive difference between TMOS and MTMS systems is considered to be due to the differ-
ences in mean size and total amount of free volume elements created by the incorporation 
of silica. The size - selective CO 
2
/CH 
4
separation ability of the hybrid membranes prepared 
with MTMS is sacrifi ced by excess enhancements of mean size and total amount of free 
volume elements although CO 
2
permeability of the MTMS systems is markedly increased. 
It should be noted the CO 
2
/CH 
4
separation ability of the TMOS/MTMS combined systems 
shows an intermediate behaviour between those of TMOS and MTMS systems. As shown 
in Figure 8.7 ,  
α
  (CO 
2
/CH 
4
) of the TMOS/MTMS combined systems have high values and 
tend to exceed the upper bound for CO 
2
/CH 
4
separation [29] with increasing CO 
2
perme-
ability or silica content. Especially, 6FDA 

TAPOB HBPI 
– 
silica hybrid membranes 
contain more than 20 wt% of silica show high  
α
  (CO 
2
/CH 
4
) values, exceeding the upper 
bound. Although a similar tendency of improvement of CO 
2
/CH 
4
separation ability has 
been reported for some linear - type polyimide – silica hybrid membranes [9] , such unique 
improvements of both CO 
2
permeability and CO 
2
/CH 
4
separation ability for the TMOS/
MTMS combined system observed in this study have not been yet reported. This fact 
indicates that mean size and distribution of free volume elements in the TMOS/MTMS 
combined systems are successfully controlled for effi cient CO 
2
/CH 
4
separation and, as a 
result, the TMOS/MTMS combined systems show simultaneous large enhancements of 
CO 
2
permeability and CO 
2
/CH 
4
separation ability.
Figure 8.7 Ideal CO 
2
 /CH 
4
selectivity (  
α
 (CO 
2
 /CH 
4
 )) of HBPI – silica hybrid membranes 
plotted against CO 
2
permeability coeffi cient


Physical and Gas Transport Properties
157

Download 4,39 Mb.

Do'stlaringiz bilan baham:
1   ...   103   104   105   106   107   108   109   110   ...   233




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish