Mathematical analysis of truncated hexahedron (cube)



Download 0,93 Mb.
Pdf ko'rish
bet5/9
Sana03.06.2023
Hajmi0,93 Mb.
#948499
1   2   3   4   5   6   7   8   9
Bog'liq
mathematicalanalysisoftruncatedhexahedron-150108035741-conversion-gate01

HCR’s Theory 
of Polygon
” as follows 
(

+
)
Hence, by substituting the corresponding values in the above expression, we get 
(
(
+ )
√ (
+ )
+
)
(
+

√ + + + (√
+
)
)
(
+ √ √
√ + + + )
(
+
√ + + +
)
(
+
√ +
)
(
√ + )
(
√ +
)
(
√ +
)
It’s clear that the solid angle subtended by each of the regular octagonal faces is greater than the solid angle 
subtended by each of the equilateral triangular faces at the centre of any truncated hexahedron. 
Important parameters of a truncated hexahedron:
1.
 
Inner (inscribed) radius

It is the radius of the largest sphere inscribed (trapped inside) by a 
truncated hexahedron. The largest inscribed sphere always touches all 6 congruent regular octagonal 


Mathematical analysis of truncated hexahedron (cube)
Application of HCR’s formula for regular polyhedrons (all five platonic solids) 
Applications of “HCR’s Theory of Polygon” proposed by Mr H.C. Rajpoot (year-2014) 
©All rights reserved 
faces but does not touch any of 8 equilateral triangular faces at all since all 6 octagonal faces are 
closer to the centre as compared to all 8 triangular faces. Thus, inner radius is always equal to the 
normal distance (
) of octagonal faces from the centre & is given from the eq(V)
 
as follows
 
+
 
Hence, the 
volume of inscribed sphere
is given as 
(
+ )
2.
 
Outer (circumscribed) radius

It is the radius of the smallest sphere circumscribing a given 
truncated hexahedron or it’s the radius of a spherical surface passing through all 24 vertices of a given 
truncated hexahedron. It is calculated as follows (See figure 3 above).
 
In right 

(
)
(
)
In right 
⇒ √
+
√(
)
+ (
+
)

+
+ +

+

+
√ +
Hence, the outer radius of truncated hexahedron is given as 
√ +

Download 0,93 Mb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6   7   8   9




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish