Matematika kafedrasi nurmatova gulnoraning


§ 7. Statistik taqsimot bilan nazariy taqsimot orasidagi bog’lanish



Download 1,07 Mb.
bet16/19
Sana01.08.2021
Hajmi1,07 Mb.
#135485
1   ...   11   12   13   14   15   16   17   18   19
Bog'liq
statistik va korrelyasion boglanishlar

§ 7. Statistik taqsimot bilan nazariy taqsimot orasidagi bog’lanish
Shuni qayd etib o’tamizki, taqsimot deyilganda ehtimollar nazariyasida tasodifiy miqdorning mumkin bo’lgan qiymatlari va ularning ehtimollari orasidagi moslik, matematik statistikada esa kuzatilgan variantalar va ularning chastotalari yoki nisbiy chastotalari orasidagi moslik tushiniladi.

3-misol. Hajmi 20 bo’lgan tanlanmaning chastotalari taqsimoti berilgan:

: 2 6 12

: 3 10 7

Nisbiy chastotalar taqsimotini yozing.

Yechish. Nisbiy chastotalarni topamiz. Buning uchun chastotalarni tanlanma hajmiga bo’lamiz:



Nisbiy chastotalar taqsimotini yozamiz:

Xi: 2 6 12

Ni: 0.15 0.5 0.35

Nisbiy chastotalar yig’indisi birga teng bo’ladi:

W1+W2+W3+ ... +Wk= + + … + = =1

To’plam variantalarining bir qismi (ulushi) biror x sondan kichik, teng yoki undan katta bo’lishi mumkin. Variantalarning x sondan kichik bo’lgan qiymatlarining nisbiy chastotasi

Fn(x)=

empirik taqsimot funksiya deyiladi, bu yerda m(x) x dan kichik bo’lgan variantalar soni, n esa tanlanma to’plamning hajmi.

Shunday qilib, masalan, Fn(x2) ni topsh uchun x2 dan kichik variantalar sonini tanlanma hajmiga bo’lish lozim;

.

Bosh to’plam taqsimotining interval funksiyasini, tanlanma taqsimotining empirik funksiyasidan farq qilib taqsimotning nazariy funksiyasi deyiladi. Empirik ya’ni statistik funksiya va nazariy funksiyalar orasidagi farq shundaki, nazariy funksiya X Fn(x) empirik funksiya esa shu hodisaning o’zining nisbiy chastotasini aniqlaydi. Bu yerda X Fn(x) shu hodisaning F(x) ehtimoliga ehtimol bo’yicha yaqinlashadi. Boshqacha qilib aytganda, Fn(x) va F(x) sonlar bir biridan kam farq qiladi. Shu yerning o’zidayoq, bosh to’plam taqsimotining nazariy funksiyasini taqribiy tasvirlashda tanlanma taqsimotning empirik funksiyasidan foydalanish maqsadga muvofiq bo’lishi kelib chiqadi.

Bunday xulosa shu bilan ham tasdiqlanadiki, Fn(x) funksiya F(x) ning barcha xossalariga ega. Darhaqiqat, Fn(x) funksiyaning ta’rifidan foydalanib uning quyidagi xossalari kelib chiqadi:


  1. empirik funksiyaning qiymati [0;1] kesmaga tegishli;

  2. Fn(x) – kamaymaydigan funksiya;

  3. Agar x1- eng kichik varianta bo’lsa, u holda da Fn(x) =0; xk- eng katta varianta bo’lsa, u holda da Fn(x) =1.

Shunday qilib, tanlanma taqsimotining empirik funksiyasi bosh to’plam taqsimotining nazariy funksiyasini baholash uchun xizmat qiladi.

4-misol. Tanlanmaning quyida berilgan taqsimot bo’yicha uning empirik funksiyasini tuzing.

variantalar 2 6 10

chastotalar 12 18 30

Yechish: Tanlanma hajmini topamiz:

12+18+30=60. Eng kichik varianta 2 ga teng. Demak, da Fn(x) =0.

X<6 qiymat, xususan, x1=2 qiymat 12 marta kuzatilgan, demak,

X<10 qiymatlar, jumladan x1=2 va x2=6 qiymatlar 12+18=30 marta kuzatilgan; demak,

X=10 eng katta varianta bo’lgani uchun

Izlanayotgan empirik funksiya:

Chastotalar poligoni deb (x1, n1); (x2, n2); ... ;(xk, nk) nuqtalarni tutashtiruvchi siniq chiziqqa aytiladi. Nisbiy chastotalar poligoni deb (x1, W1); (x2, W2); … ; (xk, Wk) nuqtalarni tutashtiruvchi siniq chiziqqa aytiladi.

5-misol. Berilgan tanlanma taqsimoti bo’yicha chastotalar va nisbiy chastotalar poligonini chizing.

1 2 4 5 8

5 10 15 7 3

Yechish. Tanlanma hajmi n=5+10+15+7+3=40 ga teng. Nisbiy chastotalarni topamiz:

1 2 4 5 8

Chastotalar gistogrammasi deb, asoslari h uzunlikdagi intervallar, balandliklari esa ni dan iborat bo’lgan to’g’ri to’rtburchakdan iborat pog’onasimon figuraga aytiladi, bu yerda h- bosh to’plamning bizni qiziqtiradigan belgisining kuzatiladigan qiymatlarini o’z ichiga olgan interval uzunligi, ni esa i-intervalvalga tushgan variantalar soni. Ko’p hollarda chastota gistogrammasi belgi uzluksiz bo’lgan holda qo’llanadi.

Nisbiy chastotalar gistogramasi asoslari h uzunlikdagi intervallar, balandliklari nisbatga teng bo’lgan to’g’ri to’rtburchaklardan iborat pog’onasimon figuradan iborat.

6-misol. Berilgan tanlanma taqsimoti bo’yicha chastotalar va nisbiy chastotalar gistogrammalarini chizing.

5-10 10-15 15-20 20-25

2 6 12 10

Yechish. n=2+6+12+10=30 – tanlanma hajmi.

Matematik statistika o’rganadigan masalalardan biri, taqsimotning turli sonli xarakteristikalarini baholashdan iborat.

(1) tanlanmaning o’rta arifmetik qiymati deb,

=

ga aytamiz.

Agar tasodifiy miqdor ustida olib borilgan kuzatishlar natijalari mos ravishda marta takrorlansa, u holda o’rta arifmetik quyidagi formula yordamida aniqlanadi:

= .

7-misol. Quyida tavakkaliga olingan 100 ta talabaning bo’yini o’lchash natijalari keltirilgan

tekshirilgan talabalar bo’yining o’rtacha arifmetik qiymatini toping.

Yechish. Oraliqlar o’rtalarini topib va ularni varianta deb hisob qilib yangi jadval tuzamiz.

Tanlanma hajmi n= 10+14+26+28+12+8+2=100.

O’rta arifmetik qiymat topish formulasiga ko’ra,

= = =166.


  1. tanlanmaning tanlanma dispersiyasi deb,

=

ifodaga aytiladi.

7-misol uchun tanlanma dispersiyani hisoblang.

Yuqoridagi tanlanma dispersiyani topish formulasiga ko’ra,


Tanlanma dispersiyadan musbat ishora bilan olingan kvadrat ildiz



=

ga taqsimotning o’rtacha kvadratik xatosi (o’rtacha kvadratik og’ishi) deyiladi.

7-misol uchun o’rtacha kvadratik xato

ga teng.

Tanlanma to’plamning o’rta arifmetik qiymati va tanlanma dispersiyasidan boshqa xarakteristikalari ham mavjud, shulardan ba’zi birlarini keltiramiz. Eng katta chastotaga ega bo’lgan varianta moda deyiladi va μ0 bilan belgilanadi.

7-misol uchun moda ya’ni

μ0=168

bo’ladi.

Variatsion qatorni variantalar soni teng ikki qismga ajratadigan varianta variatsion qatorning medianasi deyiladi va me kabi belgilanadi. Agar variantalar soni toq, ya’ni n=2k+1 bo’lsa, u holda me=xk+1 bo’ladi, variantalar soni juft, ya’ni n=2k bo’lsa, u holda



Me=

deb olinadi.

7-misol uchun mediana ya’ni

me=168

bo’ladi.


Variatsiya uzunligi xmax-xmin (yoki x*n-x*1) formula yordamida hisoblanadi.

Variatsiya koeffitsenti deb



v=

ifodaga aytiladi.

7-misol uchun variatsiya koeffitsenti

v=

ga teng.


Taqsimotning asimmetriya (qiyshayganlik) koeffitsenti deb

As=

ifodaga aytiladi.

7-misol uchun asimmetriya koeffitsentini hisoblaymiz.



Demak, javob:

Bu koeffitsent yordamida taqsimotni nosimmetrikligini aniqlanadi. Simmetrik taqsimot funksiyalar uchun As=0.

Taqsimotning eksessiyasi deb



Ek=

ifodaga aytiladi.

7-misol uchun eksessiyasini hisoblaymiz.




Download 1,07 Mb.

Do'stlaringiz bilan baham:
1   ...   11   12   13   14   15   16   17   18   19




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish