Mashinada o'qitishning xronologiyasi Atama mashinada o'rganish tomonidan 1959 yilda ishlab chiqarilgan Artur Samuel, amerikalik IBMer va sohasida kashshof kompyuter o'yinlari va sun'iy intellekt. 1960 yillar davomida mashinalarni o'rganish bo'yicha tadqiqotlarning vakili kitobi Nilssonning "Mashinalarni o'rganish to'g'risida" kitobi bo'lib, asosan naqshlarni tasniflash uchun mashinalarni o'rganish bilan shug'ullanadi. 1973 yilda Duda va Xart tomonidan ta'riflanganidek, naqshni tanib olish bilan bog'liq qiziqish 1970-yillarda davom etdi. 1981 yilda o'qitish strategiyasidan foydalanish to'g'risida hisobot berildi, shunda neyron tarmoq kompyuter terminalidan 40 ta belgini (26 ta harf, 10 ta raqam va 4 ta maxsus belgi) tanib olishni o'rganadi.
Tom M. Mitchell mashinalarni o'rganish sohasida o'rganilgan algoritmlarning keng iqtibosli, rasmiyroq ta'rifini taqdim etdi: "Kompyuter dasturi tajribadan o'rganadi deyiladi E ba'zi bir sinf vazifalariga nisbatan T va ishlash o'lchovi P agar uning vazifalaridagi ishlashi T, bilan o'lchanganidek P, tajriba bilan yaxshilanadi E." Mashinali o'qitish bilan bog'liq bo'lgan vazifalarning ushbu ta'rifi tubdan taklif qiladi operatsion ta'rifi maydonni kognitiv jihatdan aniqlashdan ko'ra. Bu quyidagicha Alan Turinguning qog'ozidagi taklif "Hisoblash texnikasi va razvedka", unda" Mashinalar o'ylay oladimi? "degan savol" Mashinalar biz qila oladigan narsani qila oladimi? "degan savol bilan almashtirildi.
Mashinada o'qitish va ma'lumotlar qazib olish ko'pincha bir xil usullarni qo'llaydi va bir-birining ustiga bir-birini qoplaydi, ammo mashinada o'qitish, bashoratga asoslanadi ma'lum o'quv ma'lumotlaridan o'rganilgan xususiyatlar, ma'lumotlar qazib olish ga e'tibor qaratadi kashfiyot ning (ilgari) noma'lum ma'lumotlardagi xususiyatlar (bu tahlil qadamidir bilim kashfiyoti ma'lumotlar bazalarida). Ma'lumotlarni qazib olishda ko'plab kompyuterlarni o'rganish usullari qo'llaniladi, ammo maqsadlari har xil; boshqa tomondan, mashinasozlik ma'lumotlarini qazib olish usullarini "nazoratsiz o'rganish" yoki o'quvchilar aniqligini oshirish uchun oldindan ishlov berish bosqichi sifatida ham qo'llaydi. Ushbu ikkita tadqiqot jamoalari o'rtasidagi chalkashliklarning aksariyati (ko'pincha alohida konferentsiyalar va alohida jurnallar mavjud) ECML PKDD katta istisno bo'lish) ular bilan ishlaydigan asosiy taxminlardan kelib chiqadi: mashinasozlikda ishlash odatda qobiliyatiga qarab baholanadi ko'payish ma'lum bilimlarni topish va ma'lumotlarni qazib olishda (KDD) asosiy vazifa ilgari kashf etishdir noma'lum bilim. Ma'lum bo'lgan bilimlarga qarab baholanadigan ma'lumotsiz (nazoratsiz) usul boshqa boshqariladigan usullar bilan osonlikcha ustunlikka ega bo'ladi, odatdagi KDD topshirig'ida o'qitish ma'lumotlari mavjud emasligi sababli boshqariladigan usullardan foydalanish mumkin emas.