Elektr maydoni kuchlanganligi vektorining oqimi. Gauss teoremasi
Gauss teoremasi elektrostatikaning asosiy teoremalaridan biri bo‘lib, Kulon qonuni va ustma-ustlash prinsipiga asoslanadi. S sirtdan o‘tuvchi elektr maydoni kuchlanganlik vektori oqimini ko‘rib chiqaylik (8.7 – rasm, a).
Elementar oqim ga teng bo‘lib, to‘la oqim quyidagicha aniqlanadi:
(8.3)
Agar zarad yopiq sferik sirt ichida joylashgan bo‘lsa, u holda (8.3) ga ko‘ra
(8.4) yoki
(8.5) bo‘ladi.
8.7 – rasm
(8.4) va (8.5) tenglamalar Gauss teoremasini ifodalaydi va quyidagicha ta’riflanadi. «Yopiq sirt orqali o‘tuvchi elektr induksiya oqimining vektori shu sirt ichidagi hajmda joylashgan erkin zaradlarning algebraik yig‘indisiga teng yoki boshqacha qilib aytganda, yopiq sirt orqali o‘tuvchi elektr maydoni kuchlanganligi vektorining oqimi shu sirt chegaralab turgan hajmdagi erkin zaradlar algebraik yig‘indisini muhitning absolut dielektrik singdiruvchanligiga nisbatiga teng».
Gauss teoremasi elektrostatik maydonning biror bir nuqtasidagi kuchlanganlik va potensialni topishda qo‘llaniladi.
(8.4) va (8.5) tenglamalar Gauss teoremasining integral shakllari deb ataladi. Integral shakldagi Gauss teoremasi yordamida elektr induksiya chiziqlarining bulog‘i (chiqishi)ni maydonning shu nuqtadagi zarad zichligi bilan qanday bog‘langanligini aniqlab bo‘lmaydi. Buning uchun Gauss teoremasining differensial shaklidan foydalaniladi. Uni hosil qilish uchun (8.5) tenglamaning ikki tomonini S yopiq sirt bilan chegaralangan V hajmga bo‘lamiz:
Bundan
Yopiq sirtdan o‘tuvchi vektor kattalikni shu sirt bilan chegaralangan hajmga nisbati vektorning divergensiyasi deb ataladi. Aytib o‘tish joizki, div – bu hajmiy hosila olish demakdir.
Shunday qilib, Gauss teoremasi differensial shaklda quyidagicha yoziladi:
ya’ni elektr maydonining manbai maydonning zarad joylashgan qismida mavjud bo‘ladi.
bo‘lgan muhit uchun quyidagi tenglama o‘rinli:
Masala. Oraliq masofasi 2 sm bo‘lgan ikkita yassi elektrod vakuumda joylashgan (8.8-rasm). O‘ngdagi elektrod yerlangan, chapdagisi esa EYuKi 220 V bo‘lgan batareyaning musbat qismasiga ulangan, manfiy qismasi esa yerlangan. Elektrodlar orasiga zichligi (bunda a = 30 kV/sm3) qonuniyat bilan o‘zgaradigan hajmiy zarad joylashtirilgan. x – chap plastinadan boshlanadigan masofa. Elektrodlar orasidagi fazoda potensialning o‘zgarish qonuniyatini aniqlang.
Yechish. Elektrodlarning o‘lchami ular orasidagi masofadan ancha katta deb hisoblaymiz va x o‘qini 8.8 – rasmdagidek yo‘naltiramiz. Masala shartiga ko‘ra potensial faqat x o‘qi bo‘ylab o‘zgaradi, y va z o‘qlari bo‘lylab esa o‘zgarmaydi. Binobarin,
Yuqoridagi ifodani x bo‘yicha ikki marta integrallab quyidagi ifodalarni hosil qilamiz .
Chegaraviy shartlardan foydalanib, integrallash doimiylarini aniqlaymiz:
x=0 da =200 = C2;
x=2 sm da
Binobarin,
Do'stlaringiz bilan baham: |