MapReduce and Apache spark: technology analysis, advantages and disadvantages t q urazmatov1 and X sh Kuzibayev



Download 296,98 Kb.
bet3/4
Sana26.02.2022
Hajmi296,98 Kb.
#468545
1   2   3   4
Bog'liq
067-ICMSIT-III-2022-оформ (2) (1) (1) fixed

When to use MapReduce:
- In linear processing of large data sets
- When no intermediate solution is required.
When to use Apache spark:
- Fast and interactive data processing;
- When joining the data set;
- When processing schedules;
- When performing repetitive work;
- Real-time processing;
- In machine learning
3.Results:
As a result of our research, we have the following facts. We compared MapReducate and Apache spark based on 20 types of parameters. We placed the results of the studies in the table below.
Table 1. MapReduce and Apache spark comparison table.

Parametrs

MapReduce

Apache spark


Data processing

For mass processing only

Mass processing, as well as real-time data processing

Processing speed

Slower than Apache spark because if there is an input / output delay on the disk

100 times faster in memory and 10 times faster on disk

Category

Data processing mechanism

Data Analytics Engine

Costs

Cheaper compared to Apache spark

More expensive due to the large amount of RAM

Scalability

Both scales are limited to 1000 nodes per cluster

Both scales are limited to 1000 nodes per cluster

Machine learning

MapReduce is more compatible with Apache Mahout when integrated with machine learning.

Apache spark has built-in machine learning APIs

Compatibility

Compatible with all data sources and file formats

Apache spark can integrate with all data sources and file formats supported by the Hadoop cluster.

Security

The MapReduce framework is safer compared to the Apache spark

The security features of the Apache spark are evolving and becoming more sophisticated.

Scheduler

Depending on the external planner

Apache spark has its own planner

Resistance to errors

Use replication for error tolerance

Apache spark uses RDD and other storage models for fault resistance

Ease of use

Thanks to the MapReduce JAVA API, it is a bit more complicated compared to the Apache spark

Apache spark is easier to use because of the APIs

Duplication elimination

MapReduce does not support this feature

Apache spark processes each entry exactly once, thus eliminating duplication.

Language supporting

The main language is Java, but languages such as C, C ++, Ruby, Python, Perl, Groovy are also supported.

Apache spark supports Java, Scala, Python and R.

Delay

Very high delay

Faster compared to MapReduce Framework

Complexity

Codes are hard to write and debug

Easy to write and debug

Apache

An open source framework for data processing

An open source framework for high-speed data processing

Coding

More code lines

Fewer code rows

Interactive mode

Not interactive

Interactive

Infrastructure

Brand equipment

Medium and high level hardware

SQL

Hive supports query language

Spark supports via SQL



Download 296,98 Kb.

Do'stlaringiz bilan baham:
1   2   3   4




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish