Malakaviy bitiruv ishi


Ikki o`lchovli normal (Gauss) taqsimoti



Download 1,37 Mb.
bet6/6
Sana25.01.2022
Hajmi1,37 Mb.
#409570
1   2   3   4   5   6
Bog'liq
bazi muhim taqsimotlar (2)

Ikki o`lchovli normal (Gauss) taqsimoti



2r
(X,Y) tasodifiy miqdor ikki o`lchovli normal taqsimotga ega bo`lsin. U holda (X,Y) ning birgalikdagi zichlik funksiyasi

1 x a 2

x a y a y a

f x, y

exp


1

1 1 2 2

2 2 2


1 1 2 2

Geometrik nuqtayi nazardan

f x, y

grafigi cho`qqisi



a1 , a2

nuqtada


joylashgan <> shaklini bildiradi. (4-rasm)

Agarda biz bu tog`ni OXY tekisligiga parallel tekislik bilan kesadigan bo`lsak, u holda kesilish chiziqlari quyidagi ellipslardan



x a 2

x a y a

y a 2


2

2
1 2r 1 2 2 C

1 1 2 2

konstanta, bu yerda

a1 MX , a2

MY ,

DY ,

va r



rX ,Y -


korrelatsiya koeffitsientidir.

Agar r=0 bo`lsa, bu chiziqlar aylanalardan iborat bo`lib qoladi. Biz r ning aynan korrelatsiya koeffissienti bo`lishiga ishonch hosil qilish maqsadida



Z1 va Z 2


Yangi tasodifiy miqdorlarni kiritamiz. Tabiiyki

MZk

0, DZk

1, k

1,2. U


holda

Z1 , Z2 ning zichlik funksiyasi

z 2 2 z 2

g z1 , z2

exp 1



2 2 .






Ba`zi muhim ikki o`lchovli taqsimotlar

Doiradagi tekis taqsimot.


Radiusi R=1 bo`lgan doirada (X,Y) tasodifiy miqdor tekis taqsimotga ega bo`lsin. (1-rasm)



x


Demak, (X,Y) ning birgalikdagi zichlik funksiyasi



f (x, y)

C, agar x2

0, agar x2

y2 1,

y2 1.


O`zgarmas C ni

f (x, y)dxdy 1,

ya`ni


1 1 x 2

cdxdy 1

1 1 x 2

shartdan aniqlaymiz. Bu karrali integralni geometrik ma`nosidan kelib chiqqan holda hisoblash osonroq(2-rasm)




f (x, y)

sirt va OXY tekislik bilan chegaralangan jismning hajmi 1 ga



tengdir. Bizning holda bu asosi va balandligi c bo`lgan


silindr hajmidir

V Demak,

C va izlanayotgan zichlik


funksiyasi

f (x, y)
agar x2


Unga mos taqsimot funksiyani

hisoblaymiz:




x y

F(x, y) f

x

u,v dudv

1


y

1



u 2

1 dudv.



agar x2
y2 1,

y2 1.







(3-rasm)

Endi X va Y larning marginal taqsimot funksiyalari Fx



hisoblaymiz: -1
va FY

larni



x 1 u 2


x


F f u,v dudv

1 dudv

1 v 1 u2 du

X

1 1 u 2

1 u 2

1



1 x 1

x 1 1

2 1 u2 du

1

x 1 x2

arcsinu


1


2

x 1 x2

arcsin x

Demak,



agar

FX agar

agar


1 x 1,




Aynan shunga o`xshash




FY y

1 1 y

2

0,

1 y2



1,

arcsin y ,



agar agar agar

y

1 y 1


Nihoyat, X va Y larning marginal zichliklarini hisoblaymiz:






f X f

x, y dy

1 x 2



1 x 2

1 dy


1 x 1.



Ko`rinib turibdiki, miqdorlar ekan.

f x, y fX fY

demak, X va Y bog`liq tasodifiy



SHuni ta`kidlab o`tish lozimki, tekis taqsimotga ega bo`lgan har qanday

(X,Y) juftlik doimo bog`liq bo`ladi deb aytish noto`g`ridir. CHunki X vaY larning bog`liqlik xossalari ular qanday sohada tekis taqsimotga ega ekanligiga bog`liqdir. SHu boisdan keyingi taqsimotni ko`rib o`tamiz.


Kvadratdagi tekis taqsimot.


(X,Y) juflik

0,1


0,1

kvadratda tekis taqsimotga ega bo`lsin. U holda


ular birgalikdagi taqsimot funksiyasi ko`rinishi quyidagidek bo`ladi.





F (x, y)

Bundan


0,

x y,

1,

x, y 0



0 x, y 1,

x, y 1.



F x,1
0, x

x, 0

1, x


0,

x 1,

1.



, y F 1, y

0, y 0,



y, 0 y 1

1, y 1.




Demak, barcha

x, y R1

lar uchun



F x, y FX FY

ya`ni X va Y



bog`liq emas ekan.

3-§. Tasodifiy miqdorlarning taqsimot qonuni va taqsimot funksiyalariga doir masalalar.


1-misol. 10 ta lotoreya belitida 2 tasi yutuqli bo`lsa, tavvakkaliga olingan 3 ta lotoreya beletlari ichida yutuqlilari soni X tasodifiy miqdorning taqsimot qonunini toping.
YECHISH: X tasodifiy miqdorni qabul qilishi mumkin bo`lgan

qiymatlari x1 0, x2

C 0 C 3

1, x3 2.



56 7

Bu qiymatlarning mos ehtimolliklari esa



p P 0

2 8 ;


C

10
1 3 120 15
C1 C 2 56 7

p P 1

2 8 ;


C

10
2 3 120 15

C 2 C1 8 1

p P 2

2 8 ;


C

10
3 3 120 15

X tasodifiy miqdor taqsimot qonunini jadval ko`rinishida yozamiz.




X

0

1

2

P

7

15


7

15


1

15




7 7 1 1

15 15 15




  1. misol. 1- misoldagi X tasodifiy miqdor taqsimot funksiyasini tapamiz.


X

0

1

2

P

7

15


7

15


1

15




  1. Agar x

0 bo`lsa,

F x P X 0 0;


  1. Agar




  1. Agar

0 x 1
1 x 2

bo`lsa, F x P 1 P


bo`lsa, F x P

;
14 ;

15


  1. Agar x 2 bo`lsa, F x P 1

Demak,

0,

7 ,



F x 15

14 ,

15

1,

agar x 0



agar 0 x 1
agar 1 x 2

agar x 2.

F(x) taqsimot funksiya grafigi




x



  1. misol. X tasodifiy miqdor zichlik funksiyasi

f tenglik bilan berilgan. O`zgarmas a parametrni toping.

Zichlik funksiyaning 4-xossasiga ko`ra




dx 1,

ya`ni



d
1 d


c
a lim 2 dx a lim arctgx


c



c
d c 1 x d
Demak, a


  1. misol. X diskret tasodifiy miqdor taqsimot qonuni berilgan bo`lsa, X tasodifiy miqdorning matematik kutilmasini toping.

X

500

50

10

1

0

P

0.01

0.05

0.1

0.15

0.69


MX 500

0.01


50 0.05

10 0.1

0.15

0.069


8.65.

  1. misol. X uzluksiz tasodifiy miqdor zichlik funksiyasi berilgan




0, x

f x C x 2 , x

0.1


0.1

C va MX ni toping.

Zichlik funksiyaning 4-xossasiga ko`ra


f x dx 1.

Demak,



1 1

C x2dx C

0 0

1, C




3

3 va



0, x

f x 3x 2 , x

0.1


0.1

Endi matematik kutilmani hisoblaymiz.




1


MX f

x dx

3 x x 2dx .



0 4

  1. misol. Quyidagi taqsimot qonuni bilan berilgan X tasodifiy miqdorning matematik kutilmasi, dispersiyasi, o`rtacha kvadratik chetlanishini toping.

X

1

2

3

4

5

R

0.1

0.2

0.3

0.3

0.1

YECHISH: X va X 2

topamiz:

tasodifiy miqdorlarning matematik kutilmasini

MX 0.1

2 0.2

0.3

4 0.3



0.1

3.1;


MX 12

0.1


22 0.2

32 0.3

42 0.3

52 0.1

10.9.


Bundan dispersiya formulasiga asosan topamiz:

DX MX 2 MX 2

10,9


3.1 2

1.29


X tasodifiy o`rtacha matematik cheylashishi

1.1357.

Javob:

MX 3.1; DX

1.29,


X 1.1357.

  1. misol. X tasodifiy miqdorning matematik kutilmasi va disprsiyasi berilgan: MX=5; DX=7. U holda Z=4X+3 tasodifiy miqdorning matematik kutilma va dispersiyasini toping.

YECHISH. Matematik kutilmaning 1-3- xossalariga asosan:


M 4X 3

M 4X

M 3 4MX

3 4 5 3 23




Dispersiyaning 1-3-xossalariga asosan esa:

D 4X 3

D 4X

D 3 42 DX

0 16 7

112.

Javob: MX=23; DX=112.


BINOMIAL TAQ


  1. C
    misol. Bir shaharda 30% aholi ish joyiga shaxsiy avtotransportida borishni afzal ko`radi. Tasodifiy ravishda 8 ta odam tanlab olindi. X- shaxsiy avtomobilni afzal ko`radilar soni. Uning taqsimot qonunini toping. YECHISH. X ning mumkin bo`lgan qiymatlari 0,1,2,…,8; ularga mos keladigan ehtimolliklar P(X=k) quyidagi Bernulli formulasi yordamida hisoblanadi:

P X k

P8 k

k 0.3 k

0.7 8 k ,

k 0,1,2,...,8.


  1. 8
    misol. N dona o`yin soqqasi bir vaqtda tashlandi.

X tasodifiy miqdor soqqalarning ustiki tomonidan tushgan ochkolar yig`indisining matematik kutilmasi va disprrsiyasini toping.

YECHISH. X k k-chi soqqaning ustki tomonida tushgan ochkolar soni
bo`lsin. U holda X k o`zaro bog`liqsiz bir xil taqsimlangan tasodifiy miqdorlar:


1

2 3

4

5 6

1




1




1




1




1




1

,

k

1, n

6




6




6




6




6




6











Xk

X X1 X 2 ... X n , P
91 21 2 35

MX 3.5 va DX MX 2

MX 2

k 6 k k

k 6 6 12

Matematik kutilma va dispersiya xossalariga asosan

MX M X1

... Xn



MX ...

MX n

n MX k

3.5n;




DX D X1

... Xn



DX1

...

DX n

n DX k

35 n



12

Javob: MX

3.5n;

DX 35 n . 12

  1. misol. Bankka tashrif qiluvchi shaxslar soni Puasson taqsimotiga bo`ysunadi. O`rta hisobda bankka 3 daqiqada bir mijoz kirar ekan.

    1. Navbatdagi bir daqiqa davimida bankka bir mijoz kirishi ehtimolini

toping.


YECHISH. Masalaning shartiga ko`ra o`rta hisobda bankka xar 3 daqiqada bir mijoz kirar ekan. Puasson taqsimoti uchun matematik kutilish

parametrga teng ekanligini hisobga olsak,

qilamiz.


1 ekanligini hosil

  1. Navbatdagi bir daqiqa davomida bankka bir mijoz kirishi ehtimolini

topamiz:




P X e

0.2388;



3


  1. Navbatdagi bir daqiqa davomida bankka kamida uch kishi kirish

ehtimolini toppish uchun teskari hodisa, ya`ni ko`pi bilan ikki kishi kirish ehtimolini topamiz:

P X 2

P X 0

2

P X 1 P X


1 1 1

e 1

1! 2!



e 3 1

3 18

0.9951;



Izlanayotgan ehtimollik :


P X 3

1 P X 2

1 0.9951

0.0048;





  1. misol. Idishda 8 ta detal bor, ulardan 3 tasi yaroqli. Idishdan tavakkaliga 3 ta detal olindi. X tasodifiy miqdor- olingan yaroqli detallar soni. Uning taqsimot qonunini yozing.

Yechish. X ning mumkin bo`lgan qiymatlari quyidagicha:


x1 0, x2

1, x3

2, x4 3.


Ehtimolning klassik ta`rifiga asosan

X 0, X

1, X



2, X 3

hodisalarning ehtimollarini topamiz:



P X 0

10 , P X 1

56

30 , P X 2

56

15 , P X .

56

Bu X tasodifiy miqdorning taqsimot qonuni quyidagicha:


X

0

1

2

3

P

10/56

30/56

15/56

1/56

  1. masala. X diskret tasodifiy miqdor ushbu




X

-1

3

5

R

0.2

0.5

0.3

Taqsimot qonuni bilan berilgan. Uning taqsimot funksiyasini toping.

Yechish. Ravshanki,

uchun F x

0, chunki bu holda X


hodisa mumkin bo`lmagan hodisadir. Endi -1


x 1;3

uchun



F x P X x P X

1 P X 3

0.2

0.5


0.7;


bo`lganda esa F x

P X x

1 bo`ladi, chunki



x 5 uchun X

ishonchli hodisa bo`ladi. Bu taqsimot funksiyaning analitik ifadasi quyidagicha bo`ladi:

0,

F x 0.2;

0.7;


x 1

1 x 3

3 x 5



1; x 5.


  1. masala. X tasodifiy miqdor

a, b

da tekis taqsimot qonuniga ega




bo`lsin. Tekis taqsimotning zichlik funksiyasi ushbu formula bilan beriladi:


agar x

f agar x

a,b

a,b

bo`lsa bo`lsa

Tekis taqsimotning taqsimot funksiyasi quyidagicha:



0,

F x x a ,

b a

1,

agar agar agar



x a

a x b

b x

bo`lsa, bo`lsa, bo`lsa.


  1. masala. Normal taqsimot qonuni. (Gauss qonuni) Amaliyotda uchraydigan tasodifiy miqdorlar bo`ysunadigan taqsimot qonunlari orasida ko`proq normal taqsimot qonuni bilan ish ko`rishga to`g`ri keladi . Bu qonun bilan taqsimlangan X tasodifiy miqdorning taqsimot zichligi ushbu

formula bilan beriladi, taqsimot funksiyasi esa

F du
kabi bo`ladi. Bunda a va o`zgarmas sonlar bo`lib, ular taqsimotning
parametrlari deb yuritiladi hamda a munosabatlar

o`rinlidir. Xususan, a 0, 1 bo`lganda taqsimot funksiyasi
u 2

2

du


1 x2

ko`rinishga, taqsimot zichligi esa

x e 2

2

ko`rinishga ega bo`ladi



hamda bu holda X tasodifiy miqdorni (0,1)- parametrni standart normal qonun bilan taqsimlangan deymiz.

funksiyalar qiymati jadvaldan topiladi.



  1. masala. X tasodifiy miqdor ushbu





f

zichlik funksiyasiga ega. C o`zgarmasning qiymatini, tasqimot funksiyasini va R(-1

Yechish. Taqsimot zichligi xossalariga asosan,


C C F x P X



P 1 X 1

F 1 F 1 .


2





  1. masala. Ovchining nishonga tegizish ehtimoli p=1.8.

Bog`liqsiz 3ta o`q otishda nishonga tekkan o`qlar soni taqsimot qonuni taqsimot funksiyasi va grafigini yasang.

Yechish.


: 0,

P : 0.008,

1

0.096



2

0.384

3

0.512




P 0 q3

0.23

0.008





P

1

3 0.22 0.8

0.096

P

2

3 0.2 0.82

0.384

P 3 p3

0.83

0.512






x








  1. F x

0,

sin 2x, 0 x


21, x

4







P




  1. P x

0,
2 cos 2x,

0,

x 0, x


4 0 x

4
0 2

4 2


C e x , x 0, 0
C=const-? F(x)-? xossadan


1 P x dx

0

0dx





x

Ce xdx 0 c


0


x



F (x)

e u d 1,

0

0


x 0

, x 0




E - tasodifiy miqdor ko`rsatkichli taqsimlangan.

MUSTAQIL ISHLASH UCHUN MISOL VA MASALALAR


1. Diskret tasodifiy miqdor ushbu taqsimot qonuni (jadvali) bilan


berilgan; :

P :

1,

0.5,

0,

0.3,


1

0.2


ning taqsimot funksiyasini tuzing va grafigini chizing.





    1. Taqsimot funksiyasi


F (x)

0,

0.3,



agar agar

x 1,

1 x 0,

0.5,

1,

agar agar

0 x 1

x 1.


bo`lgan diskret tasodifiy miqdorning taqsimot qonuni (jadvali) ni tuzing.
0.5 va P ehtimollarni hisoblang.


    1. Diskret tasodifiy miqdorning taqsimot qonuni




: 0,

P : 0.1,

1,

0.3



2,

0.2,


3,

0.4



bo`lsa a) b) tasodifiy miqdorning tasimot
qonunlarini tuzing.

4. Diskret tasodifiy miqdorning tasimot qonuni
: 2, 1, 0, 1, 2

P :

bo`lsa; a)

0.2,


0.1,

0.3,


0.1,
b)

0.3


tasodifiy miqdorlarning taqsimot


qonunlarini tuzing.

  1. Bog`liqsiz va tasodifiy miqdorlarning taqsimot qonunlari:



P : 0.2,

0.8




P : 0.3,

0.6,

0.1

bo`lsa

,

/

va

/

tasodifiy miqdorlarning taqsimot



va 0, 1, 2

qonunlarini toping.



  1. Bog`liqsiz va tasodifiy miqdorlarning taqsimot qonunlari




: 1, 1, 2

va :

1, 0, 1, 2


P : 0.4, 0.3 0.3

P : 0.2,

0.25, 0.3,

0.25



bo`lsa , va tasodifiy miqdorlarning taqsimot qonunlarini toping.

  1. Nishonga tegish ehtimollari mos ravishda 0,8; 0,7; 0,9 va 0,8 bo`lgan to`rtta to`pdan bir vaqtda bog`liqsiz ravishda snaryadlar otilgan. Nishonga tekkan snaryadlar soni taqsimot qonunini tuzing.

  2. Idishda 6 ta bir xil sharlar bo`lib, ulardan 4 tasi oq, qolanlari esa qora rangda, Idishdan tavakkaliga uchta shar olinganda, ular orasidagi oq sharlar sonining taqsimot qonunini toping.

  1. Benulli sxemasida

P A 1/ 2

bo`lsa, beshta tajribada A hodisa


bajarilgan tajribalar soni taqsimot qonunini tuzing



  1. Birinchi marta “gerb” tushguncha tanga tashlash tajribasida tanga tashlashlar soni ning taqsimot qonunini toping.

  2. Binomial taqsimot. Bernulli sxemasida P(A)=p, 0
    bo`lsa, n ta tajribada A hodisa chastotasi ro`y berishlar soni taqsimot qonunini tuzing.

  3. Geometrik taqsimot. Bernulli sxemasida P(A)=p, 0

birinchi marta A hodisa bajarilguncha o`tkazilgan tajribalar sonining taqsimot qonunini toping.

  1. Gipergeometrik taqsimot. Ombordagi N ta mahsulotdan M tasi

sifatli bo`lsa, sotuvga chiqarilgan n ta mahsulotdan sifatlilar soni taqsimot qonunini toping.

  1. Diskret tekis taqsimot . Taqsimot funksiyasi

agar

F agar k

agar

x k 1, k

1,2...,n




bo`lgan tasodifiy miqdor taqsimot jadvalini tuzing.


a,b

dagi tekis taqsimot.


a,b

oraliqqa nuqta tashlash tajribasida




tashlangan nuqta koordinatasi ning taqsimot funksiyasini toping. Grafigini chizing.

  1. Koshi taqsimoti. Markazi koordinata boshida bolgan birlik aylanadan

tavakkaliga tanlangan nuqtadan aylanaga urinma o`tkazilgan. Urinmaning tanlangan nuqtadan abssissa o`qi bilan kesishguncha bo`lgan kesmasi uzunligi ning taqsimot funksiyasini toping.

XULOSA
Хulosa qilib shuni aytish mumkinki, ushbu malakaviy bitiruv ba`zi muhim taqsimotlarni o`rganishga bag`ishlangan bo`lib, uning natijalaridan “Matematika o‟qitish metodikasi” yo„nalishi talabalariga “Ehtimollar nazariyasi va matematik statistika” fanining “Tasodifiy miqdorlar va taqsimot funksiyalar” bo`limini o`rganishda kengroq tushuncha hosil qilishga, kengroq tasavvur hosil qilishga yordam beradi deb o`ylaymiz. Bu malakaviy bitiruv ishi diskret va uzluksiz tasodifiy miqdorlarning taqsimot qonunlari va taqsimot funksiyalarini, ularning ta`riflari, xossalari va grafiklarini o`rganishda muhim rol o`ynaydi. Ishlangan misollari orqali olingan bilimlarni mustahkamlash imkonini beradi. Shu bilan birga talabalarga olimpiadalarga tayyorlanish hamda o`z ustida mustaqil ishlashlarida ham juda yaxshi yordam beradi degan umiddamiz.

Ushbu malakaviy bitiruv ishi kirish, 4 paragraf, xulosa va foydalanilgan adabiyotlar ro`yxatidan iborat.


Foydalanilgan adabiyotlar ro`yxati


  1. I. A. Karimov “Yuksak ma‟naviyat yengilmas kuch”. Т. “Ma‟naviyat” 2008y, 61-bet.

  2. I. A. Karimov “Jahon moliyaviy iqtisodiy inqirozi, O„zbekiston shaoritida uni bartaraf etishning yo„llari va choralari”. Т. “O„zbekiston” 2009y, 56- bet.

  3. Kadrlar tayyorlash milliy dasturi. O„quvchi ma‟naviyatini shakllantirish “Sharq” nashriyoti. T. 2000y, 20-54-betlar.

  4. O‘zbekiston Respublikasining ta’lim to‘g‘risidagi qonuni. O„quvchi

ma‟naviyatini shakllantirish “Sharq” nashriyoti. T. 2000y, 7-18-betlar.

  1. Abdushukurov A.A. Ehtimollar nazariyasi. Ma‟ruzalar matni. Toshkent:

«Universitet», 2000.

  1. Аbdushukurov А.А., Azlarov T.A., Djamirzayev A.A. Ehtimollar nazariyasi va matematik statistikadan misol va masalalar to„plami. Toshkent «Universitet», 2003.

  2. Tursunova T.M, Sayfullayeva G.S. “Ehtimollar nazariyasi va matematik statistika” fani bo`yicha innovatsion majmua, NavDPI. Navoiy 2013.

  3. Бочаров П. П., Печинкин А. В. Теория вероятностей. Математическая статистика. - 2-е изд. - М.: ФИЗМАТЛИТ, 2005.

  4. Ватутин В.А., Ивченко Г.И., Медведев Ю.И., Чистяков В.П. Теория вероятностей и математическая статистика в задачах М.: 2003.

  5. Кибзун А. И., Горяинова Е. Р., Наумов А. В., Сиротин А. Н. Теория вероятностей и математическая статистика. Базовый курс с примерами и задачами / Учебн. пособие. - М.: ФИЗМАТЛИТ, 2002.

  6. http://www.el.tfi.uz/pdf/enmcoq22.uzl.pdf;

  7. http://www.eknigu.com/lib/mathematics/;

Download 1,37 Mb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish