Магни́тное по́ле Земли́
Магнитное поле Земли
Результаты численного моделирования[30] магнитного поля Земли: слева — обычное, справа — во время инверсии Эту систему дифференциальных уравнений в частных производных ввиду её сложности можно точно решить только численно, и такая возможность технически появилась лишь относительно недавно. Задача численного моделирования — выяснить, описывает ли решение наблюдаемую динамику геомагнитного поля[16]. Получаемое в результате решения магнитное поле должно быть способно возбуждать токи, порождающие магнитное поле далее, и т. д. Сложность состоит в недостаточности информации о внутреннем ядре, в частности, об источниках тепла, вызывающих конвекцию[22]. Большие трудности вызывает описание мелкомасштабных структур и расчёт характеристик для них, например, слой Экмана[en] толщиной 10 см (пусть даже 10 м) на поверхности ядра радиусом 3500 км[16]. Исключительная малость безразмерных параметров E и Pm и, наоборот, большое значение Rm до сих пор являются недостижимыми при численном моделировании[17]. Прорыв в этом отношении был достигнут в 1995 году в работах групп из Японии[31] и Соединённых Штатов[32][30]. Начиная с этого момента, результаты ряда работ численного моделирования удовлетворительно воспроизводят качественные характеристики геомагнитного поля в динамике, в том числе инверсии[15][33]. Эталонной моделью считается совокупный результат работы шести научных групп в конце 90-х гг.[34], где ключевые безразмерные параметры полагались равными Ra=105, E=10−3, Pr=1, Pm=5, что очень далеко от реальных значений, но принципиально, что в рамках неё тем не менее существует стабильное решение, и она широко используется для оценки точности других методов[17]. Вместо точного численного решения, однако, можно построить систему обыкновенных дифференциальных уравнений низкого порядка, грубо отражающую основные особенности оригинальной нелинейной задачи, чтобы приближённо смоделировать поведение системы с точки зрения теории динамических систем[29][15]. Также аналитически можно оценить поведение системы в асимптотическом пределе[17][20]. Это позволяет моделировать различные режимы динамо, анализировать связь между параметрами[23]. Экспериментальное изучение динамо-эффекта также сопряжено с огромными сложностями, так как в лабораторных условиях, естественно, крайне затруднительно воспроизвести условия, создаваемые внутри Земли либо других астрономических объектов — звёзд и планет. Основной проблемой является малость магнитного числа Прандтля, характеризующего экспериментально доступные жидкости[25][17]. Поэтому с середины XX века осуществлено лишь три успешных реализации гидромагнитного динамо научными группами в Риге[35][36], Карлcруэ[37] и Кадараше[38][39], причём строго говоря, ни один из них нельзя считать прямым аналогом природного процесса[25]. Сейчас наиболее крупные исследования ведутся в Мэрилендском университете с использованием жидкого натрия и в Висконсинском университете, где необходимые для генерации динамо условия моделируются на горячей плазме[40]. Проблемой современного геомагнетизма является так называемый Новый парадокс ядра[41] В рамках традиционной теории динамо для генерации самоподдерживающегося магнитного поля необходимо твёрдое внутреннее ядро. Однако в начале 2010-х гг исследования показали, что твёрдое ядро могло образоваться всего около 1,5 миллиардов лет назад[42][43], тогда как магнитное поле существовало уже 3,4 миллиарда лет назад[44], а по некоторым данным даже 4,2 млрд лет назад[45], то есть вскоре после формирования самой планеты. Следовательно, либо твёрдое ядро всё-таки сформировалось гораздо раньше[46][47], либо на ранних этапах динамо реализовывалось по какому-то иному механизму[48][49], например, некоторые ученые полагают[50], что объяснением парадоксу может служить большая теплоотдача ядра и меньшая — мантии (в таком случае конвекция тепла возможна ещё до образования твердого ядра), однако даже изменённые значения теплопроводности не объясняют парадокс полностью. Разрабатываются также гипотезы о том, что магнитное поле Земли на ранних этапах её существования обеспечивается кристаллизацией минерального вещества — диоксида кремния[51] либо оксида магния[52]. На 2017 г. вопрос о возрасте твёрдого ядра и магнитном поле в ранние геологические периоды остаётся открытым[33]. Изменения магнитного поля Земли[править | править код] Download 0,74 Mb. Do'stlaringiz bilan baham: Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024 ma'muriyatiga murojaat qiling |
kiriting | ro'yxatdan o'tish Bosh sahifa юртда тантана Боғда битган Бугун юртда Эшитганлар жилманглар Эшитмадим деманглар битган бодомлар Yangiariq tumani qitish marakazi Raqamli texnologiyalar ilishida muhokamadan tasdiqqa tavsiya tavsiya etilgan iqtisodiyot kafedrasi steiermarkischen landesregierung asarlaringizni yuboring o'zingizning asarlaringizni Iltimos faqat faqat o'zingizning steierm rkischen landesregierung fachabteilung rkischen landesregierung hamshira loyihasi loyihasi mavsum faolyatining oqibatlari asosiy adabiyotlar fakulteti ahborot ahborot havfsizligi havfsizligi kafedrasi fanidan bo’yicha fakulteti iqtisodiyot boshqaruv fakulteti chiqarishda boshqaruv ishlab chiqarishda iqtisodiyot fakultet multiservis tarmoqlari fanidan asosiy Uzbek fanidan mavzulari potok asosidagi multiservis 'aliyyil a'ziym billahil 'aliyyil illaa billahil quvvata illaa falah' deganida Kompyuter savodxonligi bo’yicha mustaqil 'alal falah' Hayya 'alal 'alas soloh Hayya 'alas mavsum boyicha yuklab olish |