Macroeconomics


Income per  Income per



Download 3,7 Mb.
Pdf ko'rish
bet166/491
Sana20.09.2021
Hajmi3,7 Mb.
#180417
1   ...   162   163   164   165   166   167   168   169   ...   491
Bog'liq
Macroeconomics Mankiw n Gregory

Income per 

Income per 

Country

person (2007)

Country

person (2007)

United States

$45,790

Indonesia

3,728

Japan


33,525

Philippines

3,410

Germany


33,154

India


2,753

Russia


14,743

Vietnam


2,600

Mexico


12,780

Pakistan


2,525

Brazil


9,570

Nigeria


1,977

China


5,345

Bangladesh

1,242

Source: The World Bank.

International Differences in the Standard of Living



TA B L E

7 - 1

1

The Solow growth model is named after economist Robert Solow and was developed in the



1950s and 1960s. In 1987 Solow won the Nobel Prize in economics for his work on economic

growth. The model was introduced in Robert M. Solow, “A Contribution to the Theory of Eco-

nomic Growth,’’ Quarterly Journal of Economics (February 1956): 65–94.



much output is produced at any given time and how this output is allocated

among alternative uses.

The Supply of Goods and the Production Function 

The supply of

goods in the Solow model is based on the production function, which states that

output depends on the capital stock and the labor force:



Y

F(K, L).

The Solow growth model assumes that the production function has constant

returns to scale. This assumption is often considered realistic, and, as we will see

shortly, it helps simplify the analysis. Recall that a production function has con-

stant returns to scale if



zY

F(zK, zL)

for any positive number z. That is, if both capital and labor are multiplied by z,

the amount of output is also multiplied by z.

Production functions with constant returns to scale allow us to analyze all

quantities in the economy relative to the size of the labor force. To see that this

is true, set z

= 1/in the preceding equation to obtain



Y/L

F(K/L, 1).

This equation shows that the amount of output per worker Y/is a function of

the amount of capital per worker K/L. (The number 1 is constant and thus can

be ignored.) The assumption of constant returns to scale implies that the size of

the economy—as measured by the number of workers—does not affect the rela-

tionship between output per worker and capital per worker.

Because the size of the economy does not matter, it will prove convenient to

denote all quantities in per worker terms. We designate quantities per worker

with lowercase letters, so y

Y/is output per worker, and K/is capital

per worker. We can then write the production function as



y

f(k),

where we define f(k)

F(k, 1). Figure 7-1 illustrates this production function.

The slope of this production function shows how much extra output a work-

er produces when given an extra unit of capital. This amount is the marginal

product of capital MPK. Mathematically, we write

MPK

f(+ 1) − f(k).

Note that in Figure 7-1, as the amount of capital increases, the production func-

tion becomes flatter, indicating that the production function exhibits diminish-

ing marginal product of capital. When is low, the average worker has only a

little capital to work with, so an extra unit of capital is very useful and produces

a lot of additional output. When is high, the average worker has a lot of capi-

tal already, so an extra unit increases production only slightly.

C H A P T E R   7

Economic Growth I: Capital Accumulation and Population Growth

| 193



194

|

P A R T   I I I



Growth Theory: The Economy in the Very Long Run

The Demand for Goods and the Consumption Function 

The demand

for goods in the Solow model comes from consumption and investment. In other

words, output per worker is divided between consumption per worker and

investment per worker i:



y

i.

This equation is the per-worker version of the national income accounts identity

for an economy. Notice that it omits government purchases (which for present pur-

poses we can ignore) and net exports (because we are assuming a closed economy).

The Solow model assumes that each year people save a fraction of their

income and consume a fraction (1 – s). We can express this idea with the fol-

lowing consumption function:



c

= (1 − s)y,

where s, the saving rate, is a number between zero and one. Keep in mind that

various government policies can potentially influence a nation’s saving rate, so

one of our goals is to find what saving rate is desirable. For now, however, we just

take the saving rate as given.

To see what this consumption function implies for investment, substitute (1 – s)y

for in the national income accounts identity:



y

= (1 − s)i.

Rearrange the terms to obtain

i

sy.




Download 3,7 Mb.

Do'stlaringiz bilan baham:
1   ...   162   163   164   165   166   167   168   169   ...   491




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2025
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish