Machine Learning: 2 Books in 1: Machine Learning for Beginners, Machine Learning Mathematics. An Introduction Guide to Understand Data Science Through the Business Application


Infrastructure and resources for data science



Download 1,94 Mb.
Pdf ko'rish
bet84/96
Sana22.06.2022
Hajmi1,94 Mb.
#692449
1   ...   80   81   82   83   84   85   86   87   ...   96
Bog'liq
2021272010247334 5836879612033894610

Infrastructure and resources for data science
projects
To effectively store infrastructure and manage shared analytics, the TDSP
recommends using tools like: "machine learning service", databases, "big
data clusters" and cloud-based systems to store data sets. The analytics and
storage infrastructure that houses raw as well as processed or cleaned data
sets can be cloud-based or on-premises. D analytics and storage
infrastructure permits the reproducibility of analysis and prevents
duplication and the redundancy of data that can create inconsistency and
unwarranted infrastructure costs. Tools are supplied to grant specific
permissions to the shared resources and to track their activity which in turn
allows secure access to the resources for each member of the team.
Tools and utilities for project execution
Introduction of any changes to an existing process tends to be rather
challenging in most organizations. To encourage and raise the consistency
of adoption of these changes several tools can be implemented that are


provided by the TDSP. Some of the basic tasks in the data science lifecycle
including "data exploration" and "baseline modeling" can be easily
automated with the tools provided by TDSP. To allow the hassle-free
contribution of shared tools and utilities into the team's "shared code
repository", TDSP from provides a well-defined structure. This results in
cost savings by allowing other project teams within the organization to
reuse and repurpose these shared tools and utilities.
The TDSP lifecycle serves as a standardized template with a well-defined
set of artifacts that can be used to garner effective team collaboration and
communication across the board. This lifecycle is comprised of a selection
of the best practices and structures from “Microsoft” to facilitated
successful delivery predictive analytics Solutions and intelligent
applications.
Let’s look at the details of each of the five stages of the TDSP lifecycle,
namely, “Business understanding”, “Data acquisition in understanding”,
“modeling”, “deployment” and “customer acceptance”.



Download 1,94 Mb.

Do'stlaringiz bilan baham:
1   ...   80   81   82   83   84   85   86   87   ...   96




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish