Line Integrals and Green’s Theorem



Download 207,84 Kb.
bet9/10
Sana23.07.2022
Hajmi207,84 Kb.
#845005
1   2   3   4   5   6   7   8   9   10
Bog'liq
greenstheorem

Extended Green’s theorem


We can extend Green’s theorem to a region R which has multiple boundary curves. The figures below show regions bounded by 2 or more curves. You will see that this gives us away to work around singularities in the field F.




    1. Regions with multiple boundary curves


Consider the following three regions.



C1 C7
The region on the left, RA is bounded by C1 and C2. We say that the boundary is C1 + C2. Note that the way it is drawn, the region is always to the left as you traverse either boundary curve.
The region on the right, RC is bounded by C7 and C8. We say that the boundary is C7 C8. The reason for the minus sign is that the boundary curves should be oriented so that the region is to your left as you traverse the curve. As shown, the region RC is to the right of C8, but to the left of C8.
Likewise, in the middle figure, RB has boundary C3 + C4 + C5 + C6. You should check that our signs are consistent with the orientation of the curves.


    1. Extended Green’s theorem





I ∫∫·
Theorem GT.29. Extended Green’s theorem.Suppose RA is the region in the left-hand figure above then, for any vector field F differentiable in all of RA we have
F dr = curlF dx dy.
C1+C2 RA



I ∫∫·
Likewise for more than two curves: If RB has boundary C3 + C4 + C5 + C6 and F is differentiable on all of RB then

Download 207,84 Kb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6   7   8   9   10




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish