Line Integrals and Green’s Theorem



Download 207,84 Kb.
bet5/10
Sana23.07.2022
Hajmi207,84 Kb.
#845005
1   2   3   4   5   6   7   8   9   10
Bog'liq
greenstheorem

Example GT.15. If F is the electric field of an electric charge it is conservative.
Example GT.16. A gravitational field of a mass is conservative.
  1. Potential functions




Definition. If F = f is a gradient vector field then we call f apotential function for F. Note. The usual physics terminology would be to call −f the potential function for F. This section is devoted to answering two questions.

  1. How do we know if a vector field F is a gradient vector field, i.e. if F = f for some potential function f ?

  2. If it exists, how do we find the potential function f ?
    1. First answers to our questions




Theorem GT.17. Suppose F = (M, N ). We have the following answer to our two questions.

  1. If F = f , then

M ∂N
y = ∂x , i.e. My = Nx.

  1. If My = Nx in the whole plane then F is a gradient vector field, i.e F = f for some

potential function f .

  1. If F is conservative on a connected region, then F is a gradient field.

Notes. The restriction that F is defined on the whole plane is too stringent for our needs. Below, we will give what we call the Potential theorem, which only requires that F be defined and differentiable on what is called a ‘simply connected region’.

Download 207,84 Kb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6   7   8   9   10




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish