Лекции 14. Основные понятия теории графов. Некоторые виды графов (4 часа)



Download 1,82 Mb.
bet7/29
Sana14.07.2022
Hajmi1,82 Mb.
#798900
TuriЛекции
1   2   3   4   5   6   7   8   9   10   ...   29
Bog'liq
Теория графов

2. Связность. Компоненты связности
Определение. Подграфом графа G называется граф, все вершины и ребра которого содержатся среди вершин и ребер графа G. (Для орграфа то же).
Подграф наз. собственным, если он отличен от самого графа.
Говорят, что вершина w орграфа D (графа G) достижима из верш. v, если либо w=v, либо существует путь (маршрут) из v в w.
Граф (орграф) наз связным (сильно связным), если для любых двух его вершин v, w существует маршрут (путь), соединяющий v и w.
Орграф наз односторонне связным, если для любых двух его вершин по крайней мере одна достижима из другой.
Псевдографом, ассоциированным с ориентированным псевдографом D=(V,X) наз. псевдограф G=(V,X0), в котором X0 получается из X заменой всех упорядоченных пар (v,w) на неупорядоченные {v,w}.

Орграф наз слабо связным, если связным является ассоциированный с ним псевдограф.
Если граф (орграф) не является связным (слабо связным), то он наз. несвязным.
Компонентой связности графа G (сильной связности орграфа D) наз. его связный (сильно связный) подграф, не являющийся собственным подграфом никакого другого связного (сильно связного) подграфа графа G (орграфа D).
Примеры.










Матрицы достижимости и связности. Пусть A(D) – матрица смежности ориентированного псевдографа D=(V,X) (или псевдографа G=(V,X)), где V={v1,…, vn}. Обозначим через Ak=[a(k)ij] k-ю степень матрицы смежности A(D).


Утверждение. Элемент a(k)ij матрицы Ak ориентированного псевдографа D=(V,X) (псевдографа G=(V,X)) равен числу всех путей (маршрутов) длины k из vi в vj.
Для k=1 очевидно в силу построения матрицы A(D).
Пусть это справедливо для n=k-1. Т.е. в матрице Ak-1 в i-той строке на l-том месте стоит число, означающее кол-во маршрутов из vi в vl длины k1. Столбец под номером j матрицы A содержит числа, означающие кол-во дуг (ребер) из vl в vj (l-номер строки). Тогда скалярное произведение i-той строки матрицы Ak-1 на j-тый столбец матрицы A равен сумме произведений. Каждое произведение означает кол-во путей из vi в vj, проходящих через vl на предпоследнем шаге. В сумме получается общее кол-во.

Download 1,82 Mb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6   7   8   9   10   ...   29




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish