1.2 Пространственные кулачковые механизмы
Пространственные механизмы, как правило, имеют три звена, причем два подвижных звена соединены со стойкой вращательными парами, т. е. являются основными. Применение метода инверсии к такому механизму позволяет утверждать, что пространственная кулачковая пара имеет в относительном движении две степени подвижности, т. е. является парой четвертого класса. В трехзвенном механизме указанная пара накладывает, как и в плоском кулачковом механизме, три общих условия связи. Следовательно, группа Ассура состоит из одного звена одной кулачковой пары и одной пары пятого класса. Основные типы пространственных трехзвенных кулачковых механизмов изображены в таблице 3. Все они представляют собою совокупность двухзвенного простейшего механизма и группы Ассура, состоящей из одного звена, пары пятого и пары четвертого класса. Из приведенных в таблице 3 механизмов наиболее широко применяются механизмы с цилиндрическим кулачком. Замыкание кулачковой пары осуществляется геометрическое путем применения пазовых кулачков (рис. 3,а), или силовое с помощью пружин (рис. 3,б).
Таблица 3
Основные типы пространственных трехзвенных кулачковых механизмов
Рисунок 3 Примеры применения замыкания пространственных кулачковых механизмов:
а) пазовый цилиндрический кулачек;
б) роликовый толкатель с пружинным замыканием
2. Прямой и обратный ход толкателя. Рабочий и холостой ход толкателя
Условимся называть прямым ход толкателя, при котором он движется под влиянием кулачка, и обратным, который осуществляется силой пружины или веса, в то время как кулачок только удерживает толкатель от быстрого падения. В кулачках с кинематическим замыканием оба хода прямые. Как прямой, так и обратный ход может быть рабочим или холостым. Рабочий ход. Рабочим ходом называется ход толкателя, при котором требуемый закон движения его полностью определяется рабочим процессом машины. При рабочем ходе обычно требуется постоянная скорость толкателя. Например, в металлорежущих станках постоянная скорость подачи при обтачивании, растачивании, сверлении и фрезеровании обеспечивает наиболее гладкую поверхность обрабатываемой детали, постоянную нагрузку станка, а, следовательно, и наилучшее его использование. Особенно важно иметь постоянную скорость при нарезании резьбы. Постоянная скорость толкателя требуется также в текстильных и швейных машинах, где кулачки служат для направления нитки при наматывании на катушки, и во многих других случаях. Закон постоянной скорости толкателя будем считать основным законом для рабочего хода. Исключения из него встречаются чрезвычайно редко. Гораздо реже требуется выдержать заданный закон пути (перемещения толкателя). Закон изменения пути толкателя по времени или по углу поворота кулачка очень сложный. Поэтому его изображают в виде диаграммы и строят профиль кулачка графически. Если закон пути более простой и может быть выражен уравнением, то кулачок можно рассчитывать аналитически. Холостой ход. Холостым ходом называется ход толкателя, при котором требуется получить наименьшее время движения или наименьшую потерю времени. В этом случае закон движения не определяется рабочим процессом машины, а выбирается из условий наилучшей работы механизма (получения наименьших сил). Холостой ход толкателя встречается при медленном и при быстром движении кулачка. Это совершенно различные случаи, и потому мы их рассмотрим отдельно. Холостой ход при медленном движении кулачка. При медленном движении кулачка силы инерции толкателя и связанных с ним деталей настолько малы, что практически они неощутимы. Зато силы трения, особенно при кулачках с крутым профилем, которые в этом случае часто применяются, существенно влияют на величину сил, возникающих в механизме. Наиболее типичный случай холостого хода при медленном движении кулачка встречается в токарных автоматах. При медленном движении кулачка нас обычно интересует только время холостого хода, которое желательно иметь наименьшим.
Для получения наилучшей работы кулачкового механизма надо выбирать такой закон движения, при котором сила Q, действующая со стороны кулачка на толкатель, была наименьшей. Так как на прочность механизма и частично на износ влияет максимальная сила Q, а не средняя, надо стараться уменьшить максимальную силу. Наилучший результат получим в том случае, когда максимальная сила равна средней, т. е. когда сила постоянна. Этот закон и следует класть в основу профилирования кулачка при медленном движении, чтобы получить компактный, легкий и дешевый кулачковый механизм. Обычно при этом считают, что сопротивления, преодолеваемые толкателем, также постоянны. В большинстве случаев это соответствует действительности.
Холостой ход при быстром движении кулачка.
Холостой ход при быстром движении кулачка протекает иначе, чем в предыдущем случае. Трение в таких механизмах невелико благодаря хорошей смазке, а потому опасаться самоторможения в таких кулачках не приходится. Зато силы инерции достигают значительной величины из-за больших ускорений, которые приходится применять в таких кулачках. Таким образом, в быстроходных кулачках желательно получить наименьшие ускорения при наименьшем времени хода.
Do'stlaringiz bilan baham: |