Тема: Космические лучи. Источники, энергия и химическая состав космические лучи.
План:
Косми́ческие лучи́
Основные сведения
История физики космических лучей
Космические лучи ультравысоких энергий
Регистрация космических лучей
Значение для космических полётов
Косми́ческие лучи́
Косми́ческие лучи́ — элементарные частицы, фотоны и ядра атомов, движущиеся с высокими энергиями в космическом пространстве.
Основные сведения
Физику космических лучей принято считать частью физики высоких энергий и физики элементарных частиц.
Физика космических лучей изучает:
процессы, приводящие к возникновению и ускорению космических лучей;
частицы космических лучей, их природу и свойства;
явления, вызванные частицами космических лучей в космическом пространстве, атмосфере Земли и планет.
Изучение потоков высокоэнергетичных заряженных и нейтральных космических частиц, попадающих на границу атмосферы Земли, является важнейшей экспериментальной задачей.
Космические лучи могут возникать:
вне нашей Галактики;
в нашей Галактике;
на Солнце;
в межпланетном пространстве.
Первичными принято называть внегалактические, галактические и солнечные космические лучи.
Вторичными космическими лучами принято называть потоки частиц, возникающих под действием первичных космических лучей в атмосфере Земли и регистрирующихся на поверхности Земли.
Космические лучи являются составляющей естественной радиации (фоновой радиации) на поверхности Земли и в атмосфере.
До развития ускорительной техники космические лучи служили единственным источником элементарных частиц высокой энергии. Так, позитрон и мюон были впервые найдены в космических лучах.
Диапазон энергий частиц в космических лучах велик — от 106 эВ до 5⋅1021 эВ.
По количеству частиц космические лучи на 92 % состоят из протонов, на 6 % — из ядер гелия, около 1 % составляют более тяжёлые элементы, и около 1 % приходится на электроны. При изучении источников космических лучей вне Солнечной системы протонно-ядерная компонента в основном обнаруживается по создаваемому ею потоку гамма-лучей орбитальными гамма-телескопами, а электронная компонента — по порождаемому ею синхротронному излучению, которое приходится на радиодиапазон (в частности, на метровые волны — при излучении в магнитном поле межзвёздной среды), а при сильных магнитных полях в районе источника космических лучей — и на более высокочастотные диапазоны. Поэтому электронная компонента может обнаруживаться и наземными астрономическими инструментами.
Традиционно частицы космических лучей делят на следующие группы: p {\displaystyle (Z=1),} α {\displaystyle (Z=2),} L {\displaystyle (Z=3...5),} M {\displaystyle (Z=6...9),} H {\displaystyle (Z\geqslant 10),} VH {\displaystyle (Z\geqslant 20)} (соответственно, протоны, альфа-частицы, лёгкие, средние, тяжёлые и сверхтяжёлые). Особенностью химического состава первичного космического излучения является аномально высокое содержание ядер группы L (литий, бериллий, бор) по сравнению с составом звёзд и межзвёздного газа. Данное явление объясняется тем, что механизм генерации космических частиц в первую очередь ускоряет тяжёлые ядра, которые при взаимодействии с протонами межзвёздной среды распадаются на более лёгкие ядр. Данное предположение подтверждается тем, что космические лучи обладают очень высокой степенью изотропии.
Do'stlaringiz bilan baham: |