Yechimi: (3+4)*3=21 km javob 21 km.
2)Oralaridagi masofa 21 km bo`lgan ikki qishloqdan bir vaqtda bir-biriga qarab ikki piyoda yo`lga chiqdi.Ulardan biri 3km/soat tezlik bilan, ikkinchisi 4km/soat tezlik bilan yurdi.Ular necha soatdan keyin uchrashadilar?
Yechimi: 21/(3+4)=3 soat javob 3 soatda uchrashadi.
3)Oralaridagi masofa 21 km bo`lgan ikki qishloqdan bir vaqtda bir-biriga qarab ikki piyoda yo`lga chiqdi va 3 soatdan keyin uchrashdilar. Piyodalardan birining tezligi 3 km/soat.Ikkinchisi ning tezligini aniqlang.
Yechimi: 21/3-3=4km/soat javob 4km
2-reja: Ko‘pyoq. To‘g‘ri burchakli parallelepiped. Fazoviy shakllar. Kub va uning elementlari tushunchalari bilan tanishtirish.
Eng ko'p ishlatiladigan koordinatalar tizimi to'rtburchaklar koordinatalar tizimi (dekart koordinatalari tizimi deb ham ataladi).
Tekislikdagi va kosmosdagi koordinatalarni cheksiz ko'p turli xil usullar bilan kiritish mumkin. Bu yoki boshqa matematik yoki fizik masalalarni koordinatalar usuli bilan hal qilishda siz aniq koordinatali tizimlardan foydalanishingiz mumkin, bu holda ushbu vaziyatda muammo osonroq yoki qulayroq echilishini tanlaysiz. Koordinatalar tizimining taniqli umumlashtirilishi mos yozuvlar tizimlari va mos yozuvlar tizimlari.
Koordinata tekisligi
Agar siz tekislikda ikkita o'zaro perpendikulyar sonli o'qlarni qursangiz: OX va OY, u holda ular koordinata o'qlari deb ataladi. Gorizontal OX o'qi abssissa o'qi (x o'qi), vertikal OY o'qi ordinata o'qi (y o'qi) deb nomlanadi.
O'qlar kesishmasida turgan O nuqta, boshlanish deyiladi. Bu ikkala o'q uchun nol nuqtadir. Ijobiy sonlar abssissa o'qida o'ng tomonga, ordinatalar o'qida esa nol nuqtadan yuqoriga qarab tasvirlangan. Salbiy sonlar boshidan (O nuqta) chapga va pastga nuqtalar bilan ifodalanadi. Koordinata o'qlari yotadigan tekislik koordinata tekisligi deyiladi.
Koordinata o'qlari tekislikni to'rtdan yoki kvadrant deb nomlangan to'rt qismga bo'linadi. Ushbu choraklarni rim raqamlari bilan rasmda tartiblangan tartibda raqamlash odatiy holdir.
Tekislikdagi nuqta koordinatalari
Agar biz koordinata tekisligida ixtiyoriy A nuqtani olsak va undan koordinata o'qlariga perpendikular chizsak, u holda perpendikulyarlarning asoslari ikkita raqam bo'ladi. Vertikal perpendikulyar ko'rsatgan songa A nuqtaning absissasi deyiladi. Gorizontal perpendikulyar ko'rsatgan son A nuqtaning ordinatasi.
Chizilgan rasmda A nuqta abssissasi 3 ga, ordinat esa 5 ga teng.
Absissa va ordinatalar tekislikdagi berilgan nuqtaning koordinatalari deyiladi.
Nuqta koordinatalari nuqta belgilashning o'ng tomoniga qavs ichida yoziladi. Avval abstsissa, so'ngra ordinat yoziladi. Demak, A (3; 5) yozuvi A nuqtaning abssissasi uch, ordinat esa beshta ekanligini bildiradi.
Nuqtaning koordinatalari uning tekislikdagi o'rnini belgilaydigan sonlardir.
Agar nuqta abssissa o'qida yotsa, uning ordinatasi nolga teng (masalan, koordinatalari -2 va 0 bo'lgan B nuqta). Agar nuqta ordinatalar o'qida yotsa, u holda uning abstsissasi nolga teng (masalan, koordinatalari 0 va -4 bo'lgan S nuqta).
Boshlanish nuqtasi O - ham absissaga, ham ordinataga ega bo'lib, nolga teng: O (0; 0).
Ushbu koordinata tizimi to'rtburchaklar yoki dekartiya deb nomlanadi.
koordinata burchaklari koordinata o'qlari tomonidan hosil qilingan to'rtta burchak koordinata burchaklari deb ataladi. ular rasmda ko'rsatilgandek raqamlangan. 1. quyidagi jadvalda qaysi belgilar turli koordinatali burchaklarda nuqta koordinatalariga ega ekanligi ko'rsatilgan:
1 rasm 2 rasm
2-rasmda A1 nuqta birinchi koordinatali burchakda, A2 nuqta - ikkinchisida, A4 nuqta - uchinchisida va A3 nuqta - to'rtinchi qismida joylashgan.
Agar nuqta abscissa o'qida yotsa (masalan, 2-rasmdagi B1 nuqta), u holda uning y koordinatasi nolga teng. Agar nuqta ordinatada yotsa (masalan, 2-rasmdagi B2 nuqta), u holda uning abssissasi nolga teng.
Geometriyada koʻpburchak — uchtadan kam boʻlmagan chekli sondagi kesmalardan iborat yopiq siniq chiziq. Bunda chiziqning ketma-ket keluvchi har uchta uchi bir toʻgʻri chiziqda yotmasligi shart. Bir tekislikda yotuvchi koʻpburchakning tashkil qiluvchi kesmalari uning tomonlari deyiladi. Koʻpburchak tomonlari kesishmasa, u sodda koʻpburchak deyiladi. Har qanday sodda koʻpburchak tekislikni ikki sohaga ajratadi. Koʻpburchakning umumiy uchga ega boʻlgan tomonlari qoʻshni tomonlar deyiladi. Sodda koʻpburchak uchidan chiquvchi va ikkita qoʻshni tomonlarni oʻz ichiga oluvchi nurlar hosil qilgan burchak ichki soha bilan kesishsa, unga koʻpburchak burchagi deb ataladi. Sodda {\displaystyle n} ta burchakli koʻpburchak burchaklari yigʻindisi 180°({\displaystyle n} —2) ga teng boʻladi. Agar koʻpburchak uning ixtiyoriy bitta tomonini oʻz ichiga oluvchi toʻgʻri chiziqning bir tomonida yotsa, u qavariq koʻpburchak deyiladi. Sodda koʻpburchakning hamma burchaklari oʻzaro kongruent va hamma tomonlari uzunliklari teng boʻlsa, u muntazam koʻpburchak deyiladi. Har qanday muntazam koʻpburchak uchun ichki va tashqi chizilgan aylanalari mavjud boʻladiKundalik turmushda teng shakllardan tashqari shakli (ko‘rinishi) bir xil, lekin o‘lchamlari turlicha bo‘lgan shakllarga ko‘p duch kelamiz. Tarix va geografiya fanlarida turli masshtabda ishlangan xaritalardan foydalangansiz. Sinf doskasiga ilinadigan va darsliklarda tasvirlangan respublikamizning xaritalari turli o‘lchamda, lekin ular bir xil shaklda (ko‘rinishda). Shuningdek, bitta fototasmadan turli o‘lchamdagi fotosuratlar tayyorlanadi. Bu suratlarning o‘lchamlari turlicha bo‘lsa-da, bir xil ko‘rinishda, ya’ni ular bir-biriga o‘xshaydi (1-rasm). Mashq. 2-rasmda to‘rtta romb tasvirlangan. Ulardan faqat d) va e) romblar bir xil ko‘rinishga ega. Bu romblar nimasi bilan boshqa romblardan ajralib turibdi? Keling, buni birgalikda aniqlaylik. 1. Rasmdan ko‘rinib turibdiki, AD =3, A1D1=2. Rombning tomonlari teng bo‘lgani uchun, tenglikni hosil qilamiz. Bu hola tda romblarning mos tomonlari proporsional deb yuritiladi. 2. ABCD va A1B1C1D1 romblarning mos burchaklari o‘zaro teng. Haqiqatan ham, ∠A =∠A1= 45°, ∠B =∠B1= 135°, ∠C = ∠C1= 45°, ∠D =∠D1 = 135°. Shunday qilib, bu romblarning bir-biriga o‘xshashligining sababi — mos tomonlarining proporsionalligi va mos burchaklarining tengligi deya olamiz. Ixtiyoriy ko‘pburchaklar o‘xshashligi tushunchasi ham shu asosda kiritiladi. Burchaklari soni bir xil (demak, tomonlarining soni ham bir xil) bo‘lgan ko‘pburchaklar bir xil nomli ko‘pburchaklar deb yuritiladi. Ikkita bir xil nomli ABCDE va A1B1C1D1E1 ko‘pburchaklarning burchaklari mana bu tartibda teng bo‘lsin: ∠A=∠A1, ∠B=∠B1, ∠C=∠C1, ∠D=∠D1, ∠E=∠E1. KO‘PBURCHAKLARNING O‘XSHASHLIGI 5 1 A2 B2 D2 C2 A3 B3 D3 C3 A1 B1 D1 C1 A B D C a) b) d) e) 2 Bunday burchaklar mos burchaklar deb yuritiladi. U holda, AB va A1B1, BC va B1C1, CD va C1D1, DE va D1E1, EA va E1A1 tomonlar mos tomonlar deyiladi. Ta’rif. Bir xil nomli ko‘pburchaklardan birining burchaklari ikkinchisining burchaklariga mos ravishda teng, mos tomonlari esa proporsional bo‘lsa, bunday ko‘pburchaklar o‘xshash ko‘pburchaklar deb ataladi (3-rasm). 1. O‘xshash ko‘pburchaklar ta’rifini ayting. 2. O‘xshashlik koeffitsiyenti nima va u qanday aniqlanadi? 3. Agar ABC va DEF uchburchaklarda ∠A=105°, ∠B=35°, ∠E =105°, ∠F =40°, AC = 4,4 sm, AB= 5,2 sm, BC = 7,6 sm, DE =15,6 sm, DF = 22,8 sm, EF =13,2 sm bo‘lsa, ular o‘xshash bo‘ladimi? 4. 2-rasmda tasvirlangan a) va b) romblar nima sababdan o‘xshash emas? b) va d) romblar-chi? 5. 4-rasmdagi ABO va CDO uchburchaklar o‘xshash bo‘lsa, AB, OC kesmalar uzunligini va o‘xshashlik koeffitsiyentini toping. 6. 5-rasmda ABCD A1B1C1D1. AB = 24, BC = 18, CD = = 30, AD = 54, B1C1= 54. A1B1, D1A1 va C1D1 kesmalarni toping. 7*. ABC uchburchak AB va AC tomonlarining o‘rtalari mos ravishda P va Q bo‘lsin. ∆ABC ∆APQ ekanligini isbotlang. Agar ko‘pburchakning barcha uchlari aylanada yotsa, bu ko‘pburchak aylanaga ichki chizilgan, aylana esa ko‘pburchakka tashqi chizilgan deyiladi (1-rasm). Istalgan uchburchakka tashqi aylana chizish mumkinligi va bu aylana markazi uchburchak tomonlarining o‘rta perpendikularlari kesishgan nuqtada yotishini 8-sinfda o‘rgangansiz. Agar ko‘pburchak burchaklari soni uchtadan ortiq bo‘lsa, ko‘pburchakka har doim ham tashqi aylana chizib bo‘lavermaydi. Masalan, to‘g‘ri to‘rtburchakdan farqli parallelogramm uchun tashqi chizilgan aylana mavjud emas (2-rasm). 8-sinf geometriya kursidan ma’lumki, to‘rtburchakka qarama-qarshi burchaklari yig‘indisi 180° ga teng bo‘lganda va faqat shu holda unga tashqi aylana chizish mumkin (3-rasm). 1-masala. O‘tkir burchakli ABC uchburchakning AA1 va BB1 balandliklari H nuqtada kesishadi. A1HB1C to‘rtburchak aylanaga ichki chizilgan ekanligini isbotlang. Yechilishi.AA1 BC va BB1 AC bo‘lgani uchun (4-rasm) ∠HB1C =∠HA1C=90°. Unda ∠HB1C+∠HA1C =180°. To‘rtburchak ichki burchaklari yig‘indisi 360° bo‘lgani uchun: ∠B1CA1+∠B1HC =180°. Demak, A1HB1C to‘rtburchakka tashqi aylana chizish mumkin. Aylanaga ichki chizilgan ko‘pburchak uchlari aylana markazidan teng uzoqlikda yotgani uchun aylana markazi ko‘pburchak tomonlarining o‘rta perpendikularlarida yotadi (5-rasm). Demak, aylanaga ichki chizilgan ko‘pburchak tomonlarining o‘rta perpendikularlari bir nuqtada kesishishi shart. 2-masala. Asosiga tushirilgan balandligi 16 sm bo‘lgan teng yonli uchburchak radiusi 10 sm bo‘lgan aylanaga ichki chizilgan. Uchburchak tomonlarini toping. A B C H A1 B1 4 Yechilishi. ABC uchburchakka tashqi chizilgan aylana markazi O nuqta AC tomonning o‘rta perpendikulari bo‘lgan BD balandlikda yotadi (6-rasm). Unda, OD =BD–OB =16–10=6 (sm) bo‘ladi va Pifagor teoremasiga ko‘ra, AD=√OA2 –OD2 =√102 –62 =8 (sm), AC=2AD=16(sm). Shuningdek, to‘g‘ri burchakli ABD uchburchakda AB =√AD2 +BD2 =√82 +162=8√5 (sm). Javob: 8√5 sm, 8√5 sm, 16 sm. Agar ko‘pburchakning barcha tomonlari aylanaga urinsa, u holda ko‘pburchak aylanaga tashqi chizilgan, aylana esa ko‘pburchakka ichki chizilgan deyiladi (1-rasm). Istalgan uchburchakka ichki aylana chizish mumkinligi va bu aylana markazi uchburchak bissektrisalari kesishgan nuqtada ekanligi bilan 8-sinfda tanishgansiz
Do'stlaringiz bilan baham: |